fjcamlab/deco: Decomposing Heterogeneous Cohorts using Omic Data Profiling

This package discovers differential features in hetero- and homogeneous omic data by a two-step method including subsampling LIMMA and NSCA. DECO reveals feature associations to hidden subclasses not exclusively related to higher deregulation levels.

Getting started

Package details

AuthorFrancisco Jose Campos-Laborie, Jose Manuel Sanchez-Santos and Javier De Las Rivas. Bioinformatics and Functional Genomics Group. Cancer Research Center (CiC-IBMCC, CSIC/USAL). Salamanca. Spain.
Bioconductor views Bayesian BiomedicalInformatics Clustering DifferentialExpression ExonArray FeatureExtraction GeneExpression MicroRNAArray Microarray MultipleComparison Proteomics RNASeq Sequencing Software Transcription Transcriptomics mRNAMicroarray
MaintainerFrancisco Jose Campos Laborie <fjcamlab@gmail.com>
LicenseGPL (>=3)
Version1.9.3
URL https://github.com/fjcamlab/deco
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
install.packages("remotes")
remotes::install_github("fjcamlab/deco")
fjcamlab/deco documentation built on Aug. 18, 2024, 4:28 a.m.