#' Compute Satterthwaite degrees of freedom
#'
#' Function to compute empirical degrees of freedom
#' based on Bell and McCaffrey (2002).
#'
#'
#' @importFrom stats nobs resid formula residuals var coef pt model.matrix family weights fitted.values
#' @importFrom methods is
#' @param m1 The \code{lmerMod} or \code{lme} model object.
#' @param type The type of cluster robust correction used (i.e., CR2 or none).
#' @param Vinv2 Inverse of the variance matrix.
#' @param Vm2 The variance matrix.
#' @param br2 The bread component.
#' @param Gname The group (clustering variable) name'
#'
#' @author Francis Huang, \email{huangf@missouri.edu}
#' @author Bixi Zhang, \email{bixizhang@missouri.edu}
#'
#' @export
## empirical DOF
satdf <- function(m1, type = 'none', Vinv2, Vm2, br2, Gname = NULL){
#require(Matrix)
#if(class(m1) == 'lme'){ #if nlme
if(is(m1, 'lme')){
dat <- m1$data
fml <- formula(m1)
X <- model.matrix(fml, data = dat)
B <- fixef(m1)
NG <- m1$dims$ngrps[[1]]
if (length(m1$dims$ngrps) > 3) {stop("Can only be used with two level data (for now).")}
Gname <- names(m1$groups)
y <- dat[,as.character(m1$terms[[2]])]
gpsv <- dat[,Gname]
js <- table(gpsv)
K <- ncol(X)
{#done a bit later than necessary but that is fine
if(is.unsorted(gpsv)){
stop("Data are not sorted by cluster. Please sort your data first by cluster, run the analysis, and then use the function.\n")
}
}
ml <- list()
for (j in 1:NG){
test <- getVarCov(m1, individuals = j, type = 'marginal')
ml[[j]] <- test[[1]]
}
Vm <- as.matrix(Matrix::bdiag(ml)) #to work with other funs
}
### for lmer
#if(class(m1) %in% c('lmerMod', 'lmerModLmerTest')){ #if lmer
if(is(m1, 'lmerMod')){
dat <- m1@frame
X <- model.matrix(m1) #X matrix
B <- fixef(m1) #coefficients
y <- m1@resp$y #outcome
Z <- getME(m1, 'Z') #sparse Z matrix
b <- getME(m1, 'b') #random effects
if (is.null(Gname)){
Gname <- names(getME(m1, 'l_i')) #name of clustering variable
if (length(Gname) > 1) {
stop("lmer: Can only be used with non cross-classified data. If more than two levels, specify highest level using Gname = 'clustername'")
}
}
js <- table(dat[, Gname]) #how many observation in each cluster
G <- bdiag(VarCorr(m1)) #G matrix
NG <- getME(m1, 'l_i') #number of groups :: ngrps(m1)
NG <- NG[length(NG)]
gpsv <- dat[, Gname] #data with groups
# { #done a bit later than necessary but that is fine
# if(is.unsorted(gpsv)){
# # stop("Data are not sorted by cluster. Please sort your data first by cluster, run the analysis, and then use the function.\n")
# }
# }
getV <- function(x) {
lam <- data.matrix(getME(x, "Lambdat"))
var.d <- crossprod(lam)
Zt <- data.matrix(getME(x, "Zt"))
vr <- sigma(x)^2
var.b <- vr * (t(Zt) %*% var.d %*% Zt)
sI <- vr * diag(nobs(x))
var.y <- var.b + sI
}
Vm <- getV(m1)
}
Vm <- Matrix::drop0(Vm) #make a sparse matrix, if not already
Vinv <- Matrix::solve(Vm)
#Vinv <- chol2inv(chol(Vm))
cpx <- solve(t(X) %*% Vinv %*% X) #solve(Vm)
ns <- nobs(m1)
Im <- diag(ns) #identity matrix
Hm <- X %*% cpx %*% t(X) %*% Vinv #Overall hat matrix
IH <- as.matrix(Im - Hm) #difference
nms <- names(table(dat[,Gname])) #names of clusters
K <- ncol(X) #number of vars
dd <- diag(K)
NG <- length(nms)
### adjustments
if (type == 'CR2') {
tHs <- function(x) { #working CR2
ind <- which(dat[,Gname] == x)
Xs <- X[ind, ,drop = F]
Vs <- Vm[ind, ind, drop = F]
U <- chol(Vs) #with the cholesky matrix
adj <- Xs %*% cpx %*% t(Xs) %*% chol2inv(U) #solve(Vs)
Ws <- Vinv[ind, ind, drop = F] #Wj, Vinv in clusters
ih <- IH[ind, , drop = F] #asymmetric, need rows(ind) here
ng <- nrow(Xs)
cr <- diag(ng) - adj
t(ih) %*% t(U) %*% MatSqrtInverse(U %*% cr %*% Vs %*% t(U)) %*%
U %*% Ws %*% Xs %*% cpx ### this has the adjustment in the matsqrtinv & U
# A(adjust matrix) is t(U) %*% MatSqrtInverse(U %*% cr %*% Vs %*% t(U)) %*% U
#IHjj <- Ijj - Hjj
#Bi <- chol(V3) %*% IHjj %*% V3 %*% t(chol(V3))
#Ai <- t(chol(V3)) %*% MatSqrtInverse(Bi) %*% chol(V3)
}
} else {
tHs <- function(x) { #CR0
ind <- which(dat[,Gname] == x)
Xs <- X[ind, ,drop = F]
ih <- IH[ind, , drop = F]
Ws <- Vinv[ind, ind, drop = F]
t(ih) %*% Ws %*% Xs %*% cpx ### NO ADJUSTMENT but with Ws
}
}
tmp <- lapply(nms, tHs)
#Gm = do.call('cbind', tmp) #bind them together
degf <- numeric() #container
#Wm <- MatSqrtInverse(Vm) #as per Tipton 2015 -- this is new
Wm <- Vm #W is just Vm or target variance in our case
for (j in 1:K){ #using a loop since it's easier to see
sel <- dd[j, ]
Gt <- lapply(seq(NG), function(i) tmp[[i]] %*% sel)
Gt <- as.matrix(do.call('cbind', Gt))
#ev <- eigen(Wm %*% Gt %*% t(Gt) %*% Wm)$values
#degf[j] <- (sum(ev)^2) / sum(ev^2) #final step to compute df
#GG <- Wm %*% Gt %*% t(Gt) %*% Wm #avoids using eigen; from Kolesar
#degf[j] <- sum(diag(GG))^2 / sum(GG * GG)
GG <- t(Gt) %*% Wm %*% Gt #from Pustejovsky and Tipton 2018 eq.11
GGd <- GG[row(GG) == col(GG)] #just diag(GG)
#degf[j] <- sum(diag(GG))^2 / sum(GG * GG) #lme issues?
degf[j] <- sum(GGd)^2 / sum(GG * GG)
}
degf #manual computation for CR2 dof
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.