#' Anytime univariate SCRIMP++ algorithm
#'
#' Computes the best so far Matrix Profile and Profile Index for Univariate Time Series.
#' DISCLAIMER: This algorithm still in development by its authors.
#' Join similarity, RMP and LMP not implemented yet.
#'
#' @details
#' The Matrix Profile, has the potential to revolutionize time series data mining because of its
#' generality, versatility, simplicity and scalability. In particular it has implications for time
#' series motif discovery, time series joins, shapelet discovery (classification), density
#' estimation, semantic segmentation, visualization, rule discovery, clustering etc. The anytime
#' SCRIMP computes the Matrix Profile and Profile Index in such manner that it can be stopped before
#' its complete calculation and return the best so far results allowing ultra-fast approximate
#' solutions. `verbose` changes how much information is printed by this function; `0` means nothing,
#' `1` means text, `2` adds the progress bar, `3` adds the finish sound. `exclusion_zone` is used to
#' avoid trivial matches.
#'
#' @param \dots a `matrix` or a `vector`.
#' @param window_size an `int`. Size of the sliding window.
#' @param exclusion_zone a `numeric`. Size of the exclusion zone, based on window size (default is
#' `1/2`). See details.
#' @param verbose an `int`. See details. (Default is `2`).
#' @param s_size a `numeric`. for anytime algorithm, represents the size (in observations) the
#' random calculation will occur (default is `Inf`).
#' @param pre_scrimp a `numeric`. Set the pre-scrimp step based on `window_size`, if `0`, disables pre-scrimp.
#' (default is `1/4`).
#' @param pre_only a `logical`. Returns only the pre script data. (Default is `FALSE`).
#'
#' @return Returns a `MatrixProfile` object, a `list` with the matrix profile `mp`, profile index `pi`
#' left and right matrix profile `lmp`, `rmp` and profile index `lpi`, `rpi`, window size `w` and
#' exclusion zone `ez`.
#' @export
#'
#' @family matrix profile computations
#'
#' @references Website: <http://www.cs.ucr.edu/~eamonn/MatrixProfile.html>
#'
#' @examples
#' mp <- scrimp(mp_toy_data$data[1:200, 1], window_size = 30, verbose = 0)
#' \dontrun{
#' ref_data <- mp_toy_data$data[, 1]
#' query_data <- mp_toy_data$data[, 2]
#' # self similarity
#' mp <- scrimp(ref_data, window_size = 30, s_size = round(nrow(ref_data) * 0.1))
#' # join similarity
#' mp <- scrimp(ref_data, query_data, window_size = 30, s_size = round(nrow(query_data) * 0.1))
#' }
#'
scrimp <- function(..., window_size, exclusion_zone = getOption("tsmp.exclusion_zone", 1 / 2),
verbose = getOption("tsmp.verbose", 2),
s_size = Inf, pre_scrimp = 1 / 4, pre_only = FALSE) {
argv <- list(...)
argc <- length(argv)
data <- argv[[1]]
if (argc > 1 && !is.null(argv[[2]])) {
message("Join similarity not implemented yet.")
query <- argv[[2]]
exclusion_zone <- 0 # don't use exclusion zone for joins
join <- TRUE
} else {
query <- data
join <- FALSE
}
# transform data into matrix
if (is.vector(data)) {
data <- as.matrix(data)
}
else if (is.matrix(data)) {
if (ncol(data) > nrow(data)) {
data <- t(data)
}
} else {
stop("Unknown type of data. Must be: a column matrix or a vector.")
}
if (is.vector(query)) {
query <- as.matrix(query)
} else if (is.matrix(query)) {
if (ncol(query) > nrow(query)) {
query <- t(query)
}
} else {
stop("Unknown type of query. Must be: a column matrix or a vector.")
}
ez <- exclusion_zone # store original
exclusion_zone <- round(window_size * exclusion_zone + vars()$eps)
data_size <- nrow(data)
query_size <- nrow(query)
if (query_size > data_size) {
stop("Query must be smaller or the same size as reference data.")
}
if (window_size > ceiling(query_size / 2)) {
stop("Time series is too short relative to desired window size.")
}
if (window_size < 4) {
stop("`window_size` must be at least 4.")
}
matrix_profile_size <- data_size - window_size + 1
num_queries <- query_size - window_size + 1
# check skip position
skip_location <- rep(FALSE, matrix_profile_size)
for (i in 1:matrix_profile_size) {
if (any(is.na(data[i:(i + window_size - 1)])) || any(is.infinite(data[i:(i + window_size - 1)]))) {
skip_location[i] <- TRUE
}
}
data[is.na(data)] <- 0
data[is.infinite(data)] <- 0
query[is.na(query)] <- 0
query[is.infinite(query)] <- 0
matrix_profile <- matrix(Inf, matrix_profile_size, 1)
profile_index <- matrix(-Inf, matrix_profile_size, 1)
if (join) {
# no RMP and LMP for joins
left_matrix_profile <- right_matrix_profile <- NULL
left_profile_index <- right_profile_index <- NULL
} else {
left_matrix_profile <- right_matrix_profile <- matrix_profile
left_profile_index <- right_profile_index <- profile_index
}
orig_index <- seq_len(matrix_profile_size)
order <- orig_index[orig_index > (exclusion_zone + 1)]
if (pre_scrimp > 0) {
current_step <- floor(window_size * pre_scrimp + vars()$eps)
pre_scrimp_idxs <- seq(2, matrix_profile_size, by = current_step)
}
ssize <- min(s_size, length(order))
order <- sample(order, size = ssize)
if (verbose > 1) {
if (pre_scrimp > 0) {
pb <- progress::progress_bar$new(
format = "PRE-SCRIMP [:bar] :percent at :tick_rate it/s, elapsed: :elapsed, eta: :eta",
clear = FALSE, total = length(pre_scrimp_idxs), width = 80
)
} else {
pb <- progress::progress_bar$new(
format = "SCRIMP [:bar] :percent at :tick_rate it/s, elapsed: :elapsed, eta: :eta",
clear = FALSE, total = ssize, width = 80
)
}
}
if (verbose > 2) {
on.exit(beep(sounds[[1]]), TRUE)
}
# anytime must return the result always
on.exit(return({
obj <- list(
mp = matrix_profile, pi = profile_index,
rmp = right_matrix_profile, rpi = right_profile_index,
lmp = left_matrix_profile, lpi = left_profile_index,
w = window_size,
ez = ez
)
class(obj) <- "MatrixProfile"
attr(obj, "join") <- join
obj
}), TRUE)
nn <- dist_profile(data, data, window_size = window_size)
tictac <- Sys.time()
# PRE-SCRIMP ----
if (pre_scrimp > 0) {
# initialization
# compute the matrix profile
dotproduct <- matrix(0, matrix_profile_size, 1)
refine_distance <- matrix(Inf, matrix_profile_size, 1)
j <- 1
for (i in pre_scrimp_idxs) {
# compute the distance profile
nn <- dist_profile(data, data, nn, window_size = window_size, index = i)
distance_profile <- sqrt(nn$distance_profile)
# apply exclusion zone
exc_st <- max(1, (i - exclusion_zone))
exc_ed <- min(matrix_profile_size, (i + exclusion_zone))
distance_profile[exc_st:exc_ed] <- Inf
# figure out and store the neareest neighbor
if (j == 1) {
matrix_profile <- as.matrix(distance_profile)
profile_index[] <- i
min_idx <- which.min(distance_profile)
profile_index[i] <- min_idx
matrix_profile[i] <- distance_profile[min_idx]
j <- j + 1
} else {
update_pos <- distance_profile < matrix_profile
profile_index[update_pos] <- i
matrix_profile[update_pos] <- distance_profile[update_pos]
min_idx <- which.min(distance_profile)
profile_index[i] <- min_idx
matrix_profile[i] <- distance_profile[min_idx]
}
idx_nn <- profile_index[i]
idx_diff <- idx_nn - i
dotproduct[i] <- (window_size - matrix_profile[i]^2 / 2) * nn$par$data_sd[i] * nn$par$data_sd[idx_nn] +
window_size * nn$par$data_mean[i] * nn$par$data_mean[idx_nn]
endidx <- min(matrix_profile_size, (i + current_step - 1), (matrix_profile_size - idx_diff))
dotproduct[(i + 1):endidx] <- dotproduct[i] +
cumsum(data[(i + window_size):(endidx + window_size - 1)] *
data[(idx_nn + window_size):(endidx + window_size - 1 + idx_diff)] -
data[i:(endidx - 1)] * data[idx_nn:(endidx - 1 + idx_diff)])
refine_distance[(i + 1):endidx] <-
sqrt(abs(2 * (window_size - (dotproduct[(i + 1):endidx] - window_size * nn$par$data_mean[(i + 1):endidx] *
nn$par$data_mean[(idx_nn + 1):(endidx + idx_diff)]) /
(nn$par$data_sd[(i + 1):endidx] * nn$par$data_sd[(idx_nn + 1):(endidx + idx_diff)]))))
beginidx <- max(1, (i - current_step + 1), (1 - idx_diff))
dotproduct[(i - 1):beginidx] <- dotproduct[i] +
cumsum(data[(i - 1):beginidx] * data[(idx_nn - 1):(beginidx + idx_diff)] -
data[(i - 1 + window_size):(beginidx + window_size)] *
data[(idx_nn - 1 + window_size):(beginidx + idx_diff + window_size)])
refine_distance[beginidx:(i - 1)] <-
sqrt(abs(2 * (window_size - (dotproduct[beginidx:(i - 1)] - window_size * nn$par$data_mean[beginidx:(i - 1)] *
nn$par$data_mean[(beginidx + idx_diff):(idx_nn - 1)]) /
(nn$par$data_sd[beginidx:(i - 1)] * nn$par$data_sd[(beginidx + idx_diff):(idx_nn - 1)]))))
update_pos1 <- which(refine_distance[beginidx:endidx] < matrix_profile[beginidx:endidx])
matrix_profile[(update_pos1 + beginidx - 1)] <- refine_distance[(update_pos1 + beginidx - 1)]
profile_index[(update_pos1 + beginidx - 1)] <- orig_index[(update_pos1 + beginidx - 1)] + idx_diff
update_pos2 <- which(refine_distance[beginidx:endidx] < matrix_profile[(beginidx + idx_diff):(endidx + idx_diff)])
matrix_profile[(update_pos2 + beginidx + idx_diff - 1)] <- refine_distance[(update_pos2 + beginidx - 1)]
profile_index[(update_pos2 + beginidx + idx_diff - 1)] <- orig_index[(update_pos2 + beginidx + idx_diff - 1)] - idx_diff
if (verbose > 1) {
pb$tick()
}
}
if (verbose > 1) {
pb <- progress::progress_bar$new(
format = "SCRIMP [:bar] :percent at :tick_rate it/s, elapsed: :elapsed, eta: :eta",
clear = FALSE, total = ssize, width = 80
)
}
}
if (pre_only) {
tictac <- Sys.time() - tictac
if (verbose > 0) {
message(sprintf("Finished in %.2f %s", tictac, units(tictac)))
}
return()
}
# SCRIMP ----
curlastz <- rep(0, num_queries)
curdistance <- rep(0, num_queries)
dist1 <- rep(Inf, num_queries)
dist2 <- rep(Inf, num_queries)
for (i in order) {
curlastz[i] <- sum(data[1:window_size] * query[i:(i + window_size - 1)])
curlastz[(i + 1):num_queries] <-
curlastz[i] +
cumsum(
query[(i + window_size):data_size] * data[(window_size + 1):(query_size - i + 1)] # a_term
- data[1:(num_queries - i)] * query[i:(num_queries - 1)] # m_term
)
curdistance[i:num_queries] <-
sqrt(abs(2 * (window_size -
(curlastz[i:num_queries] - # x_term
window_size * nn$par$query_mean[i:num_queries] * nn$par$data_mean[1:(num_queries - i + 1)]) /
(nn$par$query_sd[i:num_queries] * nn$par$data_sd[1:(num_queries - i + 1)])
)))
# Skip positions
curdistance[is.na(curdistance)] <- Inf
skipped_curdistance <- curdistance
skipped_curdistance[nn$par$data_sd[i:num_queries] < vars()$eps] <- Inf
if (skip_location[i] || any(nn$par$query_sd[i] < vars()$eps)) {
skipped_curdistance[] <- Inf
}
skipped_curdistance[skip_location[i:num_queries]] <- Inf
# update matrix profile
dist1[1:(i - 1)] <- Inf
dist1[i:num_queries] <- skipped_curdistance[i:num_queries]
dist2[1:(num_queries - i + 1)] <- skipped_curdistance[i:num_queries]
dist2[(num_queries - i + 2):num_queries] <- Inf
loc1 <- (dist1 < matrix_profile)
matrix_profile[loc1] <- dist1[loc1]
profile_index[loc1] <- orig_index[loc1] - i + 1
loc2 <- (dist2 < matrix_profile)
matrix_profile[loc2] <- dist2[loc2]
profile_index[loc2] <- orig_index[loc2] + i - 1
if (!join) {
# left matrix_profile
loc1 <- (dist1 < left_matrix_profile)
left_matrix_profile[loc1] <- dist1[loc1]
left_profile_index[loc1] <- orig_index[loc1] - i + 1
# right matrix_profile
loc2 <- (dist2 < right_matrix_profile)
right_matrix_profile[loc2] <- dist2[loc2]
right_profile_index[loc2] <- orig_index[loc2] + i - 1
}
if (verbose > 1) {
pb$tick()
}
}
tictac <- Sys.time() - tictac
if (verbose > 0) {
message(sprintf("Finished in %.2f %s", tictac, units(tictac)))
}
# return() is at on.exit() function
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.