#' Univariate STOMP algorithm
#'
#' Computes the Matrix Profile and Profile Index for Univariate Time Series.
#'
#' @details
#' The Matrix Profile, has the potential to revolutionize time series data mining because of its
#' generality, versatility, simplicity and scalability. In particular it has implications for time
#' series motif discovery, time series joins, shapelet discovery (classification), density
#' estimation, semantic segmentation, visualization, rule discovery, clustering etc. `verbose`
#' changes how much information is printed by this function; `0` means nothing, `1` means text, `2`
#' adds the progress bar, `3` adds the finish sound. `exclusion_zone` is used to avoid trivial
#' matches; if a query data is provided (join similarity), this parameter is ignored.
#'
#' @param \dots a `matrix` or a `vector`. If a second time series is supplied it will be a join matrix
#' profile.
#' @param window_size an `int`. Size of the sliding window.
#' @param exclusion_zone a `numeric`. Size of the exclusion zone, based on window size (default is
#' `1/2`). See details.
#' @param verbose an `int`. See details. (Default is `2`).
#'
#' @return Returns a `MatrixProfile` object, a `list` with the matrix profile `mp`, profile index `pi`
#' left and right matrix profile `lmp`, `rmp` and profile index `lpi`, `rpi`, window size `w` and
#' exclusion zone `ez`.
#'
#' @export
#'
#' @family matrix profile computations
#'
#' @describeIn stomp Single thread version.
#'
#' @references * Zhu Y, Zimmerman Z, Senobari NS, Yeh CM, Funning G. Matrix Profile II : Exploiting
#' a Novel Algorithm and GPUs to Break the One Hundred Million Barrier for Time Series Motifs and
#' Joins. Icdm. 2016 Jan 22;54(1):739-48.
#' @references Website: <http://www.cs.ucr.edu/~eamonn/MatrixProfile.html>
#'
#' @examples
#' mp <- stomp(mp_toy_data$data[1:200, 1], window_size = 30, verbose = 0)
#' \dontrun{
#' #' # using threads
#' mp <- stomp_par(mp_toy_data$data[1:400, 1], window_size = 30, verbose = 0)
#'
#' ref_data <- mp_toy_data$data[, 1]
#' query_data <- mp_toy_data$data[, 2]
#' # self similarity
#' mp <- stomp(ref_data, window_size = 30)
#' # join similarity
#' mp2 <- stomp(ref_data, query_data, window_size = 30)
#' }
stomp <- function(..., window_size, exclusion_zone = getOption("tsmp.exclusion_zone", 1 / 2),
verbose = getOption("tsmp.verbose", 2)) {
argv <- list(...)
argc <- length(argv)
data <- argv[[1]]
if (argc > 1 && !is.null(argv[[2]])) {
query <- argv[[2]]
exclusion_zone <- 0 # don't use exclusion zone for joins
join <- TRUE
} else {
query <- data
join <- FALSE
}
# transform data into matrix
if (is.vector(data)) {
data <- as.matrix(data)
}
else if (is.matrix(data)) {
if (ncol(data) > nrow(data)) {
data <- t(data)
}
} else {
stop("Unknown type of data. Must be: a column matrix or a vector.", call. = FALSE)
}
if (is.vector(query)) {
query <- as.matrix(query)
} else if (is.matrix(query)) {
if (ncol(query) > nrow(query)) {
query <- t(query)
}
} else {
stop("Unknown type of query. Must be: a column matrix or a vector.", call. = FALSE)
}
ez <- exclusion_zone # store original
exclusion_zone <- round(window_size * exclusion_zone + vars()$eps)
data_size <- nrow(data)
query_size <- nrow(query)
matrix_profile_size <- data_size - window_size + 1
num_queries <- query_size - window_size + 1
if (query_size > data_size) {
stop("Query must be smaller or the same size as reference data.")
}
if (window_size > ceiling(query_size / 2)) {
stop("Time series is too short relative to desired window size.", call. = FALSE)
}
if (window_size < 4) {
stop("`window_size` must be at least 4.", call. = FALSE)
}
# check skip position
skip_location <- rep(FALSE, matrix_profile_size)
for (i in 1:matrix_profile_size) {
if (any(is.na(data[i:(i + window_size - 1)])) || any(is.infinite(data[i:(i + window_size - 1)]))) {
skip_location[i] <- TRUE
}
}
data[is.na(data)] <- 0
data[is.infinite(data)] <- 0
query[is.na(query)] <- 0
query[is.infinite(query)] <- 0
if (verbose > 1) {
pb <- progress::progress_bar$new(
format = "STOMP [:bar] :percent at :tick_rate it/s, elapsed: :elapsed, eta: :eta",
clear = FALSE, total = num_queries, width = 80
)
}
if (verbose > 2) {
on.exit(beep(sounds[[1]]), TRUE)
}
first_product <- matrix(0, num_queries, 1)
# forward
nn <- dist_profile(data, query, window_size = window_size)
# reverse
# This is needed to handle with the join similarity.
rnn <- dist_profile(query, data, window_size = window_size)
first_product[, 1] <- rnn$last_product
tictac <- Sys.time()
matrix_profile <- matrix(Inf, matrix_profile_size, 1)
profile_index <- matrix(-Inf, matrix_profile_size, 1)
if (join) {
# no RMP and LMP for joins
left_matrix_profile <- right_matrix_profile <- NULL
left_profile_index <- right_profile_index <- NULL
} else {
left_matrix_profile <- right_matrix_profile <- matrix_profile
left_profile_index <- right_profile_index <- profile_index
}
distance_profile <- matrix(0, matrix_profile_size, 1)
last_product <- matrix(0, matrix_profile_size, 1)
drop_value <- matrix(0, 1, 1)
for (i in 1:num_queries) {
# compute the distance profile
query_window <- as.matrix(query[i:(i + window_size - 1), 1])
if (i == 1) {
distance_profile[, 1] <- nn$distance_profile
last_product[, 1] <- nn$last_product
} else {
last_product[2:(data_size - window_size + 1), 1] <- last_product[1:(data_size - window_size), 1] -
data[1:(data_size - window_size), 1] * drop_value +
data[(window_size + 1):data_size, 1] * query_window[window_size, 1]
last_product[1, 1] <- first_product[i, 1]
distance_profile <- 2 * (window_size - (last_product - window_size * nn$par$data_mean * nn$par$query_mean[i]) /
(nn$par$data_sd * nn$par$query_sd[i]))
}
distance_profile[distance_profile < 0] <- 0
distance_profile <- sqrt(distance_profile)
drop_value <- query_window[1, 1]
# apply exclusion zone
if (exclusion_zone > 0) {
exc_st <- max(1, i - exclusion_zone)
exc_ed <- min(matrix_profile_size, i + exclusion_zone)
distance_profile[exc_st:exc_ed, 1] <- Inf
}
distance_profile[nn$par$data_sd < vars()$eps] <- Inf
if (skip_location[i] || any(nn$par$query_sd[i] < vars()$eps)) {
distance_profile[] <- Inf
}
distance_profile[skip_location] <- Inf
if (!join) {
# no RMP and LMP for joins
# left matrix_profile
ind <- (distance_profile[i:matrix_profile_size] < left_matrix_profile[i:matrix_profile_size])
ind <- c(rep(FALSE, (i - 1)), ind) # pad left
left_matrix_profile[ind] <- distance_profile[ind]
left_profile_index[which(ind)] <- i
# right matrix_profile
ind <- (distance_profile[1:i] < right_matrix_profile[1:i])
ind <- c(ind, rep(FALSE, matrix_profile_size - i)) # pad right
right_matrix_profile[ind] <- distance_profile[ind]
right_profile_index[which(ind)] <- i
}
ind <- (distance_profile < matrix_profile)
matrix_profile[ind] <- distance_profile[ind]
profile_index[which(ind)] <- i
if (verbose > 1) {
pb$tick()
}
}
tictac <- Sys.time() - tictac
if (verbose > 0) {
message(sprintf("Finished in %.2f %s", tictac, units(tictac)))
}
return({
obj <- list(
mp = matrix_profile, pi = profile_index,
rmp = right_matrix_profile, rpi = right_profile_index,
lmp = left_matrix_profile, lpi = left_profile_index,
w = window_size,
ez = ez
)
class(obj) <- "MatrixProfile"
attr(obj, "join") <- join
obj
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.