#' Specifications of the Submodels of a GVAR Model
#'
#' Obtains the model specification of the country-specific VARX or
#' VECX models of a GVAR model.
#'
#' @param object an object of class \code{"bgvarest"} or \code{"bgvecest"}, usually,
#' a result of a call to \code{\link{draw_posterior.gvarsubmodels}} or
#' \code{\link{draw_posterior.gvecsubmodels}}, respectively.
#'
#' @return A data frame.
#'
#' @examples
#' # Load data
#' data("gvar2019")
#'
#' # Create regions
#' temp <- create_regions(country_data = gvar2019$country_data,
#' weight_data = gvar2019$weight_data,
#' region_weights = gvar2019$region_weights,
#' regions = list(EA = c("AT", "BE", "DE", "ES", "FI", "FR", "IT", "NL")),
#' period = 3)
#'
#' country_data <- temp$country_data
#' weight_data <- temp$weight_data
#' global_data = gvar2019$global_data
#'
#' # Difference series to make them stationary
#' country_data <- diff_variables(country_data, variables = c("y", "Dp", "r"), multi = 100)
#' global_data <- diff_variables(global_data, multi = 100)
#'
#' # Create time varying weights
#' weight_data <- create_weights(weight_data, period = 3, country_data = country_data)
#'
#' # Generate specifications
#' model_specs <- create_specifications(
#' country_data = country_data,
#' global_data = global_data,
#' countries = c("US", "JP", "CA", "NO", "GB", "EA"),
#' domestic = list(variables = c("y", "Dp", "r"), lags = 1),
#' foreign = list(variables = c("y", "Dp", "r"), lags = 1),
#' global = list(variables = c("poil"), lags = 1),
#' deterministic = list(const = TRUE, trend = FALSE, seasonal = FALSE),
#' iterations = 10,
#' burnin = 10)
#' # Note that the number of iterations and burnin draws should be much higher!
#'
#' # Overwrite country-specific specifications
#' model_specs[["US"]][["domestic"]][["variables"]] <- c("y", "Dp", "r")
#' model_specs[["US"]][["foreign"]][["variables"]] <- c("y", "Dp")
#'
#' # Create estimation objects
#' country_models <- create_models(country_data = country_data,
#' weight_data = weight_data,
#' global_data = global_data,
#' model_specs = model_specs)
#'
#' # Add priors
#' models_with_priors <- add_priors(country_models,
#' coef = list(v_i = 1 / 9, v_i_det = 1 / 10),
#' sigma = list(df = 3, scale = .0001))
#'
#' # Obtain posterior draws
#' object <- draw_posterior(models_with_priors)
#'
#' # Obtain specifications
#' get_submodel_specifications(object)
#'
#'
#' @export
get_submodel_specifications <- function(object){
n_models <- length(object)
result <- data.frame(ctry = rep(NA, n_models),
type = rep(NA, n_models),
r = rep(NA, n_models),
var_domestic = rep(NA, n_models),
lag_domestic = rep(NA, n_models),
var_foreign = rep(NA, n_models),
lag_foreign = rep(NA, n_models),
var_global = rep(NA, n_models),
lag_global = rep(NA, n_models),
ssvs = rep(NA, n_models),
bvs = rep(NA, n_models),
stringsAsFactors = FALSE)
for (i in 1:n_models) {
result[i, "ctry"] <- names(object)[i]
type <- object[[i]][["model"]][["type"]]
if (object[[i]][["model"]][["structural"]]) {
type <- paste0("S", type)
}
if (object[[i]][["model"]][["sv"]]) {
type <- paste0("SV-", type)
}
if (object[[i]][["model"]][["tvp"]]) {
type <- paste0("TVP-", type)
}
result[i, "type"] <- type
rm(type)
result[i, "var_domestic"] <- paste(object[[i]][["model"]][["domestic"]][["variables"]], collapse = ", ")
result[i, "lag_domestic"] <- object[[i]][["model"]][["domestic"]][["lags"]]
result[i, "var_foreign"] <- paste(object[[i]][["model"]][["foreign"]][["variables"]], collapse = ", ")
result[i, "lag_foreign"] <- object[[i]][["model"]][["foreign"]][["lags"]]
if (!is.null(object[[i]][["model"]][["global"]])) {
result[i, "var_global"] <- paste(object[[i]][["model"]][["global"]][["variables"]], collapse = ", ")
result[i, "lag_global"] <- object[[i]][["model"]][["global"]][["lags"]]
}
if (!is.null(object[[i]][["model"]][["rank"]])) {
result[i, "r"] <- object[[i]][["model"]][["rank"]]
}
if (!is.null(object[[i]][["model"]][["varselect"]])) {
result[i, "varselect"] <- object[[i]][["model"]][["varselect"]]
}
}
result <- result[, !unlist(lapply(result, function(x) {all(is.na(x))}))]
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.