pkgname <- "volker"
source(file.path(R.home("share"), "R", "examples-header.R"))
options(warn = 1)
options(pager = "console")
library('volker')
base::assign(".oldSearch", base::search(), pos = 'CheckExEnv')
base::assign(".old_wd", base::getwd(), pos = 'CheckExEnv')
cleanEx()
nameEx("add_clusters")
### * add_clusters
flush(stderr()); flush(stdout())
### Name: add_clusters
### Title: Add cluster number to a data frame
### Aliases: add_clusters
### ** Examples
library(volker)
ds <- volker::chatgpt
volker::add_clusters(ds, starts_with("cg_adoption"), k = 3)
cleanEx()
nameEx("add_factors")
### * add_factors
flush(stderr()); flush(stdout())
### Name: add_factors
### Title: Add PCA columns along with summary statistics (KMO and Bartlett
### test) to a data frame
### Aliases: add_factors
### ** Examples
library(volker)
ds <- volker::chatgpt
volker::add_factors(ds, starts_with("cg_adoption"))
cleanEx()
nameEx("add_index")
### * add_index
flush(stderr()); flush(stdout())
### Name: add_index
### Title: Calculate the mean value of multiple items
### Aliases: add_index
### ** Examples
ds <- volker::chatgpt
volker::add_index(ds, starts_with("cg_adoption"))
cleanEx()
nameEx("cluster_plot")
### * cluster_plot
flush(stderr()); flush(stdout())
### Name: cluster_plot
### Title: Get plot for clustering result
### Aliases: cluster_plot
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
cluster_plot(data, starts_with("cg_adoption"), k = 2)
cleanEx()
nameEx("cluster_tab")
### * cluster_tab
flush(stderr()); flush(stdout())
### Name: cluster_tab
### Title: Get tables for clustering result
### Aliases: cluster_tab
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
cluster_tab(data, starts_with("cg_adoption"), k = 2)
cleanEx()
nameEx("codebook")
### * codebook
flush(stderr()); flush(stdout())
### Name: codebook
### Title: Get variable and value labels from a data set
### Aliases: codebook
### ** Examples
volker::codebook(volker::chatgpt)
cleanEx()
nameEx("data_clean")
### * data_clean
flush(stderr()); flush(stdout())
### Name: data_clean
### Title: Prepare dataframe for the analysis
### Aliases: data_clean
### Keywords: internal
### ** Examples
ds <- volker::chatgpt
ds <- data_clean(ds)
cleanEx()
nameEx("data_clean_default")
### * data_clean_default
flush(stderr()); flush(stdout())
### Name: data_clean_default
### Title: Prepare data originating from SoSci Survey or SPSS
### Aliases: data_clean_default
### Keywords: internal
### ** Examples
ds <- volker::chatgpt
ds <- data_clean_default(ds)
cleanEx()
nameEx("data_prepare")
### * data_prepare
flush(stderr()); flush(stdout())
### Name: data_prepare
### Title: Prepare data for calculation
### Aliases: data_prepare
### Keywords: internal
### ** Examples
data <- volker::chatgpt
data_prepare(data, sd_age, sd_gender)
cleanEx()
nameEx("effect_counts")
### * effect_counts
flush(stderr()); flush(stdout())
### Name: effect_counts
### Title: Output effect sizes and test statistics for count data
### Aliases: effect_counts
### ** Examples
library(volker)
data <- volker::chatgpt
effect_counts(data, sd_gender, adopter)
cleanEx()
nameEx("effect_counts_items")
### * effect_counts_items
flush(stderr()); flush(stdout())
### Name: effect_counts_items
### Title: Test homogeneity of category shares for multiple items
### Aliases: effect_counts_items
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
effect_counts_items(data, starts_with("cg_adoption_adv"))
cleanEx()
nameEx("effect_counts_one")
### * effect_counts_one
flush(stderr()); flush(stdout())
### Name: effect_counts_one
### Title: Test homogeneity of category shares
### Aliases: effect_counts_one
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
data |>
filter(sd_gender != "diverse") |>
effect_counts_one(sd_gender)
cleanEx()
nameEx("effect_counts_one_grouped")
### * effect_counts_one_grouped
flush(stderr()); flush(stdout())
### Name: effect_counts_one_grouped
### Title: Output test statistics and effect size for contingency tables
### Aliases: effect_counts_one_grouped
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
effect_counts_one_grouped(data, adopter, sd_gender)
cleanEx()
nameEx("effect_metrics")
### * effect_metrics
flush(stderr()); flush(stdout())
### Name: effect_metrics
### Title: Output effect sizes and test statistics for metric data
### Aliases: effect_metrics
### ** Examples
library(volker)
data <- volker::chatgpt
effect_metrics(data, sd_age, sd_gender)
cleanEx()
nameEx("effect_metrics_items")
### * effect_metrics_items
flush(stderr()); flush(stdout())
### Name: effect_metrics_items
### Title: Test whether a distribution is normal for each item
### Aliases: effect_metrics_items
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
effect_metrics_items(data, starts_with("cg_adoption"))
cleanEx()
nameEx("effect_metrics_items_cor")
### * effect_metrics_items_cor
flush(stderr()); flush(stdout())
### Name: effect_metrics_items_cor
### Title: Output correlation coefficients for items and one metric
### variable
### Aliases: effect_metrics_items_cor
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
effect_metrics_items_cor(
data, starts_with("cg_adoption_adv"), sd_age
)
cleanEx()
nameEx("effect_metrics_items_cor_items")
### * effect_metrics_items_cor_items
flush(stderr()); flush(stdout())
### Name: effect_metrics_items_cor_items
### Title: Output correlation coefficients for multiple items
### Aliases: effect_metrics_items_cor_items
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
effect_metrics_items_cor_items(
data,
starts_with("cg_adoption_adv"),
starts_with("use"),
metric = TRUE
)
cleanEx()
nameEx("effect_metrics_items_grouped")
### * effect_metrics_items_grouped
flush(stderr()); flush(stdout())
### Name: effect_metrics_items_grouped
### Title: Compare groups for each item by calculating F-statistics and
### effect sizes
### Aliases: effect_metrics_items_grouped
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
effect_metrics(data, starts_with("cg_adoption_"), adopter)
cleanEx()
nameEx("effect_metrics_one")
### * effect_metrics_one
flush(stderr()); flush(stdout())
### Name: effect_metrics_one
### Title: Test whether a distribution is normal
### Aliases: effect_metrics_one
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
effect_metrics_one(data, sd_age)
cleanEx()
nameEx("effect_metrics_one_cor")
### * effect_metrics_one_cor
flush(stderr()); flush(stdout())
### Name: effect_metrics_one_cor
### Title: Test whether the correlation is different from zero
### Aliases: effect_metrics_one_cor
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
effect_metrics_one_cor(data, sd_age, use_private, metric = TRUE)
cleanEx()
nameEx("effect_metrics_one_grouped")
### * effect_metrics_one_grouped
flush(stderr()); flush(stdout())
### Name: effect_metrics_one_grouped
### Title: Output a regression table with estimates and macro statistics
### Aliases: effect_metrics_one_grouped
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
effect_metrics_one_grouped(data, sd_age, sd_gender)
cleanEx()
nameEx("factor_plot")
### * factor_plot
flush(stderr()); flush(stdout())
### Name: factor_plot
### Title: Get plot with factor analysis result
### Aliases: factor_plot
### Keywords: internal
### ** Examples
library(volker)
ds <- volker::chatgpt
volker::factor_plot(ds, starts_with("cg_adoption"), k = 3)
cleanEx()
nameEx("factor_tab")
### * factor_tab
flush(stderr()); flush(stdout())
### Name: factor_tab
### Title: Get tables with factor analysis results
### Aliases: factor_tab
### Keywords: internal
### ** Examples
library(volker)
ds <- volker::chatgpt
volker::factor_tab(ds, starts_with("cg_adoption"), k = 3)
cleanEx()
nameEx("html_report")
### * html_report
flush(stderr()); flush(stdout())
### Name: html_report
### Title: Volker style HTML document format
### Aliases: html_report
### ** Examples
## Not run:
##D # Add `volker::html_report` to the output options of your Markdown document:
##D #
##D # ```
##D # ---
##D # title: "How to create reports?"
##D # output: volker::html_report
##D # ---
##D # ```
## End(Not run)
cleanEx()
nameEx("knit_print.vlkr_plt")
### * knit_print.vlkr_plt
flush(stderr()); flush(stdout())
### Name: knit_print.vlkr_plt
### Title: Printing method for volker plots when knitting
### Aliases: knit_print.vlkr_plt
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
pl <- plot_metrics(data, sd_age)
print(pl)
cleanEx()
nameEx("labs_apply")
### * labs_apply
flush(stderr()); flush(stdout())
### Name: labs_apply
### Title: Set column and value labels
### Aliases: labs_apply
### ** Examples
library(volker)
# Set column labels using the items-parameter
volker::chatgpt %>%
labs_apply(
items = list(
"cg_adoption_advantage_01" = "Allgemeine Vorteile",
"cg_adoption_advantage_02" = "Finanzielle Vorteile",
"cg_adoption_advantage_03" = "Vorteile bei der Arbeit",
"cg_adoption_advantage_04" = "Macht mehr Spaß"
)
) %>%
tab_metrics(starts_with("cg_adoption_advantage_"))
# Set value labels using the values-parameter
volker::chatgpt %>%
labs_apply(
cols=starts_with("cg_adoption"),
values = list(
"1" = "Stimme überhaupt nicht zu",
"2" = "Stimme nicht zu",
"3" = "Unentschieden",
"4" = "Stimme zu",
"5" = "Stimme voll und ganz zu"
)
) %>%
plot_metrics(starts_with("cg_adoption"))
cleanEx()
nameEx("labs_clear")
### * labs_clear
flush(stderr()); flush(stdout())
### Name: labs_clear
### Title: Remove all comments from the selected columns
### Aliases: labs_clear
### ** Examples
library(volker)
volker::chatgpt |>
labs_clear()
cleanEx()
nameEx("labs_restore")
### * labs_restore
flush(stderr()); flush(stdout())
### Name: labs_restore
### Title: Restore labels from the codebook store in the codebook
### attribute.
### Aliases: labs_restore
### ** Examples
library(dplyr)
library(volker)
volker::chatgpt |>
labs_store() |>
mutate(sd_age = 2024 - sd_age) |>
labs_restore() |>
tab_metrics(sd_age)
cleanEx()
nameEx("labs_store")
### * labs_store
flush(stderr()); flush(stdout())
### Name: labs_store
### Title: Get the current codebook and store it in the codebook attribute.
### Aliases: labs_store
### ** Examples
library(dplyr)
library(volker)
volker::chatgpt |>
labs_store() |>
mutate(sd_age = 2024 - sd_age) |>
labs_restore() |>
tab_metrics(sd_age)
cleanEx()
nameEx("model_metrics_plot")
### * model_metrics_plot
flush(stderr()); flush(stdout())
### Name: model_metrics_plot
### Title: Plot regression coefficients
### Aliases: model_metrics_plot
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
data |>
filter(sd_gender != "diverse") |>
model_metrics_plot(use_work, categorical = c(sd_gender, adopter), metric = sd_age)
cleanEx()
nameEx("model_metrics_tab")
### * model_metrics_tab
flush(stderr()); flush(stdout())
### Name: model_metrics_tab
### Title: Output a regression table with estimates and macro statistics
### for multiple categorical or metric independent variables
### Aliases: model_metrics_tab
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
data |>
filter(sd_gender != "diverse") |>
model_metrics_tab(use_work, categorical = c(sd_gender, adopter), metric = sd_age)
cleanEx()
nameEx("pdf_report")
### * pdf_report
flush(stderr()); flush(stdout())
### Name: pdf_report
### Title: Volker style PDF document format
### Aliases: pdf_report
### ** Examples
## Not run:
##D # Add `volker::pdf_report` to the output options of your Markdown document:
##D #
##D # ```
##D # ---
##D # title: "How to create reports?"
##D # output: volker::pdf_report
##D # ---
##D # ```
## End(Not run)
cleanEx()
nameEx("plot_counts")
### * plot_counts
flush(stderr()); flush(stdout())
### Name: plot_counts
### Title: Output a frequency plot
### Aliases: plot_counts
### ** Examples
library(volker)
data <- volker::chatgpt
plot_counts(data, sd_gender)
cleanEx()
nameEx("plot_counts_items")
### * plot_counts_items
flush(stderr()); flush(stdout())
### Name: plot_counts_items
### Title: Output frequencies for multiple variables
### Aliases: plot_counts_items
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
plot_counts_items(data, starts_with("cg_adoption_"))
cleanEx()
nameEx("plot_counts_items_cor")
### * plot_counts_items_cor
flush(stderr()); flush(stdout())
### Name: plot_counts_items_cor
### Title: Plot percent shares of multiple items compared by a metric
### variable split into groups
### Aliases: plot_counts_items_cor
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
plot_counts_items_cor(
data, starts_with("cg_adoption_"), sd_age,
category=c("agree","strongly agree")
)
plot_counts_items_cor(
data, starts_with("cg_adoption_"), sd_age,
category=c(4,5)
)
cleanEx()
nameEx("plot_counts_items_grouped")
### * plot_counts_items_grouped
flush(stderr()); flush(stdout())
### Name: plot_counts_items_grouped
### Title: Plot percent shares of multiple items compared by groups
### Aliases: plot_counts_items_grouped
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
plot_counts_items_grouped(
data, starts_with("cg_adoption_"), adopter,
category=c("agree","strongly agree")
)
plot_counts_items_grouped(
data, starts_with("cg_adoption_"), adopter,
category=c(4,5)
)
cleanEx()
nameEx("plot_counts_one")
### * plot_counts_one
flush(stderr()); flush(stdout())
### Name: plot_counts_one
### Title: Plot the frequency of values in one column
### Aliases: plot_counts_one
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
plot_counts_one(data, sd_gender)
cleanEx()
nameEx("plot_counts_one_cor")
### * plot_counts_one_cor
flush(stderr()); flush(stdout())
### Name: plot_counts_one_cor
### Title: Plot frequencies cross tabulated with a metric column that will
### be split into groups
### Aliases: plot_counts_one_cor
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
plot_counts_one_cor(data, adopter, sd_age)
cleanEx()
nameEx("plot_counts_one_grouped")
### * plot_counts_one_grouped
flush(stderr()); flush(stdout())
### Name: plot_counts_one_grouped
### Title: Plot frequencies cross tabulated with a grouping column
### Aliases: plot_counts_one_grouped
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
plot_counts_one_grouped(data, adopter, sd_gender)
cleanEx()
nameEx("plot_metrics")
### * plot_metrics
flush(stderr()); flush(stdout())
### Name: plot_metrics
### Title: Output a plot with distribution parameters such as the mean
### values
### Aliases: plot_metrics
### ** Examples
library(volker)
data <- volker::chatgpt
plot_metrics(data, sd_age)
cleanEx()
nameEx("plot_metrics_items")
### * plot_metrics_items
flush(stderr()); flush(stdout())
### Name: plot_metrics_items
### Title: Output averages for multiple variables
### Aliases: plot_metrics_items
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
plot_metrics_items(data, starts_with("cg_adoption_"))
cleanEx()
nameEx("plot_metrics_items_cor")
### * plot_metrics_items_cor
flush(stderr()); flush(stdout())
### Name: plot_metrics_items_cor
### Title: Multiple items correlated with one metric variable
### Aliases: plot_metrics_items_cor
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
plot_metrics_items_cor(data, starts_with("use_"), sd_age)
cleanEx()
nameEx("plot_metrics_items_cor_items")
### * plot_metrics_items_cor_items
flush(stderr()); flush(stdout())
### Name: plot_metrics_items_cor_items
### Title: Heatmap for correlations between multiple items
### Aliases: plot_metrics_items_cor_items
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
plot_metrics_items_cor_items(data, starts_with("cg_adoption_adv"), starts_with("use_"))
cleanEx()
nameEx("plot_metrics_items_grouped")
### * plot_metrics_items_grouped
flush(stderr()); flush(stdout())
### Name: plot_metrics_items_grouped
### Title: Output averages for multiple variables compared by a grouping
### variable
### Aliases: plot_metrics_items_grouped
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
plot_metrics_items_grouped(data, starts_with("cg_adoption_"), sd_gender)
cleanEx()
nameEx("plot_metrics_one")
### * plot_metrics_one
flush(stderr()); flush(stdout())
### Name: plot_metrics_one
### Title: Output a density plot for a single metric variable
### Aliases: plot_metrics_one
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
plot_metrics_one(data, sd_age)
cleanEx()
nameEx("plot_metrics_one_cor")
### * plot_metrics_one_cor
flush(stderr()); flush(stdout())
### Name: plot_metrics_one_cor
### Title: Correlate two items
### Aliases: plot_metrics_one_cor
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
plot_metrics_one_cor(data, use_private, sd_age)
cleanEx()
nameEx("plot_metrics_one_grouped")
### * plot_metrics_one_grouped
flush(stderr()); flush(stdout())
### Name: plot_metrics_one_grouped
### Title: Output averages for multiple variables
### Aliases: plot_metrics_one_grouped
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
plot_metrics_one_grouped(data, sd_age, sd_gender)
cleanEx()
nameEx("print.vlkr_list")
### * print.vlkr_list
flush(stderr()); flush(stdout())
### Name: print.vlkr_list
### Title: Printing method for volker lists
### Aliases: print.vlkr_list
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
rp <- report_metrics(data, sd_age, sd_gender, effect = TRUE)
print(rp)
cleanEx()
nameEx("print.vlkr_plt")
### * print.vlkr_plt
flush(stderr()); flush(stdout())
### Name: print.vlkr_plt
### Title: Printing method for volker plots
### Aliases: print.vlkr_plt plot.vlkr_plt
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
pl <- plot_metrics(data, sd_age)
print(pl)
cleanEx()
nameEx("print.vlkr_rprt")
### * print.vlkr_rprt
flush(stderr()); flush(stdout())
### Name: print.vlkr_rprt
### Title: Printing method for volker reports
### Aliases: print.vlkr_rprt
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
rp <- report_metrics(data, sd_age)
print(rp)
cleanEx()
nameEx("print.vlkr_tbl")
### * print.vlkr_tbl
flush(stderr()); flush(stdout())
### Name: print.vlkr_tbl
### Title: Printing method for volker tables.
### Aliases: print.vlkr_tbl
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tb <- tab_metrics(data, sd_age)
print(tb)
cleanEx()
nameEx("report_counts")
### * report_counts
flush(stderr()); flush(stdout())
### Name: report_counts
### Title: Create table and plot for categorical variables
### Aliases: report_counts
### ** Examples
library(volker)
data <- volker::chatgpt
report_counts(data, sd_gender)
cleanEx()
nameEx("report_metrics")
### * report_metrics
flush(stderr()); flush(stdout())
### Name: report_metrics
### Title: Create table and plot for metric variables
### Aliases: report_metrics
### ** Examples
library(volker)
data <- volker::chatgpt
report_metrics(data, sd_age)
cleanEx()
nameEx("skim_metrics")
### * skim_metrics
flush(stderr()); flush(stdout())
### Name: skim_metrics
### Title: A reduced skimmer for metric variables Returns a five point
### summary, mean and sd, items count and alpha for scales added by
### add_index()
### Aliases: skim_metrics
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
skim_metrics(data)
cleanEx()
nameEx("tab_counts")
### * tab_counts
flush(stderr()); flush(stdout())
### Name: tab_counts
### Title: Output a frequency table
### Aliases: tab_counts
### ** Examples
library(volker)
data <- volker::chatgpt
tab_counts(data, sd_gender)
cleanEx()
nameEx("tab_counts_items")
### * tab_counts_items
flush(stderr()); flush(stdout())
### Name: tab_counts_items
### Title: Output frequencies for multiple variables
### Aliases: tab_counts_items
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tab_counts_items(data, starts_with("cg_adoption_"))
cleanEx()
nameEx("tab_counts_items_cor")
### * tab_counts_items_cor
flush(stderr()); flush(stdout())
### Name: tab_counts_items_cor
### Title: Compare the values in multiple items by a metric column that
### will be split into groups
### Aliases: tab_counts_items_cor
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tab_counts_items_cor(
data, starts_with("cg_adoption_"), sd_age,
category=c("agree", "strongly agree")
)
cleanEx()
nameEx("tab_counts_items_grouped")
### * tab_counts_items_grouped
flush(stderr()); flush(stdout())
### Name: tab_counts_items_grouped
### Title: Compare the values in multiple items by a grouping column
### Aliases: tab_counts_items_grouped
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tab_counts_items_grouped(
data, starts_with("cg_adoption_"), adopter,
category=c("agree", "strongly agree")
)
cleanEx()
nameEx("tab_counts_one")
### * tab_counts_one
flush(stderr()); flush(stdout())
### Name: tab_counts_one
### Title: Output a frequency table for the values in one column
### Aliases: tab_counts_one
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tab_counts_one(data, sd_gender)
cleanEx()
nameEx("tab_counts_one_cor")
### * tab_counts_one_cor
flush(stderr()); flush(stdout())
### Name: tab_counts_one_cor
### Title: Count values by a metric column that will be split into groups
### Aliases: tab_counts_one_cor
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tab_counts_one_cor(data, adopter, sd_age)
cleanEx()
nameEx("tab_counts_one_grouped")
### * tab_counts_one_grouped
flush(stderr()); flush(stdout())
### Name: tab_counts_one_grouped
### Title: Output frequencies cross tabulated with a grouping column
### Aliases: tab_counts_one_grouped
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tab_counts_one_grouped(data, adopter, sd_gender)
cleanEx()
nameEx("tab_metrics")
### * tab_metrics
flush(stderr()); flush(stdout())
### Name: tab_metrics
### Title: Output a table with distribution parameters
### Aliases: tab_metrics
### ** Examples
library(volker)
data <- volker::chatgpt
tab_metrics(data, sd_age)
cleanEx()
nameEx("tab_metrics_items")
### * tab_metrics_items
flush(stderr()); flush(stdout())
### Name: tab_metrics_items
### Title: Output a five point summary table for multiple items
### Aliases: tab_metrics_items
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tab_metrics_items(data, starts_with("cg_adoption_"))
cleanEx()
nameEx("tab_metrics_items_cor")
### * tab_metrics_items_cor
flush(stderr()); flush(stdout())
### Name: tab_metrics_items_cor
### Title: Output a correlation table for item battery and one metric
### variable
### Aliases: tab_metrics_items_cor
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tab_metrics_items_cor(
data,
starts_with("cg_adoption_adv"),
sd_age,
metric = TRUE
)
cleanEx()
nameEx("tab_metrics_items_cor_items")
### * tab_metrics_items_cor_items
flush(stderr()); flush(stdout())
### Name: tab_metrics_items_cor_items
### Title: Output a correlation table for item battery and item battery
### Aliases: tab_metrics_items_cor_items
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tab_metrics_items_cor_items(
data,
starts_with("cg_adoption_adv"),
starts_with("use"),
metric = TRUE
)
cleanEx()
nameEx("tab_metrics_items_grouped")
### * tab_metrics_items_grouped
flush(stderr()); flush(stdout())
### Name: tab_metrics_items_grouped
### Title: Output the means for groups in one or multiple columns
### Aliases: tab_metrics_items_grouped
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tab_metrics_items_grouped(data, starts_with("cg_adoption_"), sd_gender)
cleanEx()
nameEx("tab_metrics_one")
### * tab_metrics_one
flush(stderr()); flush(stdout())
### Name: tab_metrics_one
### Title: Output a five point summary table for the values in multiple
### columns
### Aliases: tab_metrics_one
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tab_metrics_one(data, sd_age)
cleanEx()
nameEx("tab_metrics_one_cor")
### * tab_metrics_one_cor
flush(stderr()); flush(stdout())
### Name: tab_metrics_one_cor
### Title: Correlate two columns
### Aliases: tab_metrics_one_cor
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tab_metrics_one_cor(data, use_private, sd_age)
cleanEx()
nameEx("tab_metrics_one_grouped")
### * tab_metrics_one_grouped
flush(stderr()); flush(stdout())
### Name: tab_metrics_one_grouped
### Title: Output a five point summary for groups
### Aliases: tab_metrics_one_grouped
### Keywords: internal
### ** Examples
library(volker)
data <- volker::chatgpt
tab_metrics_one_grouped(data, sd_age, sd_gender)
cleanEx()
nameEx("theme_vlkr")
### * theme_vlkr
flush(stderr()); flush(stdout())
### Name: theme_vlkr
### Title: Define a default theme for volker plots
### Aliases: theme_vlkr
### ** Examples
library(volker)
library(ggplot2)
data <- volker::chatgpt
theme_set(theme_vlkr(base_size=15, base_fill = list("red")))
plot_counts(data, sd_gender)
### * <FOOTER>
###
cleanEx()
options(digits = 7L)
base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n")
grDevices::dev.off()
###
### Local variables: ***
### mode: outline-minor ***
### outline-regexp: "\\(> \\)?### [*]+" ***
### End: ***
quit('no')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.