#' symptom_profile_frequency_plot
#'
#' @param data
#' @param start_date
#' @param end_date
#' @param plot_chart
#' @param title
#'
#' @return
#' @export
#'
#' @examples
symptom_profile_frequency_plot <- function(data, start_date = as.Date("2020-04-09", format = "%Y-%m-%d"),
end_date = as.Date("2020-05-09", format = "%Y-%m-%d"),
plot_chart = TRUE) {
positive_tested_symptoms <- data %>%
dplyr::select(id, covid_tested, shortness_breath, muscle_ache, cough, loss_smell_taste, chills, diarrhoea, fatigue, headache, nasal_congestion,
nausea_vomiting,sore_throat, sputum, temperature, loss_appetite, sneezing, chest_pain, itchy_eyes, joint_pain) %>%
dplyr::filter(covid_tested == "positive")
data_piv <- positive_tested_symptoms %>%
tidyr::pivot_longer(cols=3:18, names_to="Symptom", values_to="Event") %>%
dplyr::group_by(Symptom, Event) %>%
dplyr::summarise(Count=n()) %>%
dplyr::mutate(Percentage=Count/sum(Count) *100)
symptom_levels <- c('Shorthness of breath' = "shortness_breath",
'Muscle ache' = "muscle_ache",
"Cough" = "cough",
"Loss of smell and taste" = "loss_smell_taste",
"Chills" = "chills",
"Diarrhoea" = "diarrhoea",
"Fatigue" = "fatigue",
"Headache" = "headache",
"Nasal congestion" = "nasal_congestion",
"Nausea and vomiting" = "nausea_vomiting",
"Sore throat" = "sore_throat",
"Sputum" = "sputum",
"Temperature" = "temperature",
"Loss of appetite" = "loss_appetite",
"Sneezing" = "sneezing",
"Chest pain" = "chest_pain",
"Itchy eyes" = "itchy_eyes",
"Joint pain" = "joint_pain")
data_levels <- data_piv %>%
dplyr::mutate(Symptom = forcats::fct_recode(Symptom, !!!symptom_levels)) %>%
dplyr::arrange(desc(Count))
data_level_positive <- data_levels %>%
dplyr::filter(Event == "Yes")
title_stub_freq <- "SARS-COVID-19 positive tested patients, Frequency\n"
start_date_title <- format(as.Date(start_date), format = "%d %B %Y")
end_date_title <- format(as.Date(end_date), format = "%d %B %Y")
chart_title_2 <- paste0(title_stub_freq, start_date_title, " to ", end_date_title)
plot_test <- ggplot2::ggplot(data_level_positive, ggplot2::aes(x = reorder(Symptom, -Percentage), y = Percentage, fill = Percentage)) +
ggplot2::coord_flip() +
ggplot2::geom_bar(stat = "identity", position = "dodge") +
#ggplot2::scale_fill_brewer(palette = 'Reds') +
ggplot2::scale_fill_viridis_c(option = "magma", direction = -1) +
ggplot2::scale_x_discrete(limits = unique(data_level_positive$Symptom)) +
#ggplot2::theme(legend.position = "bottom") +
#ggplot2::guides(fill = ggplot2::guide_legend(nrow = 3)) +
ggplot2::theme_minimal() +
ggplot2::labs( title = chart_title_2,
subtitle = "Covid-19 Symptoms in patients tested positive",
y = "Frequency",
x = "Covid-19 Symptoms",
caption = "Source: Dataset - Your.md Dataset") +
ggplot2::theme(
axis.title.y = ggplot2::element_text(margin = ggplot2::margin(
t = 0,
r = 21,
b = 0,
l = 0
)),
plot.title = ggplot2::element_text(size = 10, face = "bold"),
plot.subtitle = ggplot2::element_text(size = 9),
axis.text.x = ggplot2::element_text(angle = 55, hjust = 1)
)
if(plot_chart == TRUE){
plot_test
}else{
data_levels
}
}
#' symptom_profile_count_plot
#'
#' @param data
#' @param start_date
#' @param end_date
#' @param plot_chart
#' @param title
#'
#' @return
#' @export
#'
#' @examples
symptom_profile_count_plot <- function(data, start_date = as.Date("2020-01-01", format = "%Y-%m-%d"),
end_date = as.Date("2020-02-01", format = "%Y-%m-%d"),
plot_chart = TRUE, title = "Test") {
positive_tested_symptoms <- data %>%
dplyr::mutate(tested_positive = stringr::str_detect(tested_or_not, pattern = "Positive" )) %>%
dplyr::filter(tested_positive == TRUE)
count_chills_n <- positive_tested_symptoms %>%
dplyr::select(id, tested_positive, chills) %>%
dplyr::rename(group = chills) %>%
dplyr::group_by(group) %>%
dplyr::summarise(Chills = n())
count_cough_n <- positive_tested_symptoms %>%
dplyr::select(id, tested_positive, Cough) %>%
dplyr::rename(group = Cough) %>%
dplyr::group_by(group) %>%
dplyr::summarise(Cough = n())
count_diarrhoea_n <- positive_tested_symptoms %>%
dplyr::select(id, tested_positive, diarrhoea) %>%
dplyr::rename(group = diarrhoea) %>%
dplyr::group_by(group) %>%
dplyr::summarise(Diarrhoea = n())
count_fatigue_n <- positive_tested_symptoms %>%
dplyr::select(id, tested_positive, fatigue) %>%
dplyr::rename(group = fatigue) %>%
dplyr::group_by(group) %>%
dplyr::summarise(Fatigue = n())
count_headache_n <- positive_tested_symptoms %>%
dplyr::select(id, tested_positive, headache) %>%
dplyr::rename(group = headache) %>%
dplyr::group_by(group) %>%
dplyr::summarise(Headache = n())
count_muscle_ache_n <- positive_tested_symptoms %>%
dplyr::select(id, tested_positive, muscle_ache) %>%
dplyr::rename(group = muscle_ache) %>%
dplyr::group_by(group) %>%
dplyr::summarise('Muscle Ache' = n())
count_nasal_congestion_n <- positive_tested_symptoms %>%
dplyr::select(id, tested_positive, nasal_congestion) %>%
dplyr::rename(group = nasal_congestion) %>%
dplyr::group_by(group) %>%
dplyr::summarise('Nasal Congestion' = n())
count_nause_vomiting_n <- positive_tested_symptoms %>%
dplyr::select(id, tested_positive, nausea_vomiting) %>%
dplyr::rename(group = nausea_vomiting) %>%
dplyr::group_by(group) %>%
dplyr::summarise('Nausea and Vomiting' = n())
count_self_diagnosis_n <- positive_tested_symptoms %>%
dplyr::select(id, tested_positive, self_diagnosis) %>%
dplyr::rename(group = self_diagnosis) %>%
dplyr::group_by(group) %>%
dplyr::summarise('Self diagnosis' = n())
count_shortness_breath_n <- positive_tested_symptoms %>%
dplyr::select(id, tested_positive, shortness_breath) %>%
dplyr::rename(group = shortness_breath) %>%
dplyr::group_by(group) %>%
dplyr::summarise('Shortness of Breath' = n())
count_sore_throat_n <- positive_tested_symptoms %>%
dplyr::select(id, tested_positive, sore_throat) %>%
dplyr::rename(group = sore_throat) %>%
dplyr::group_by(group) %>%
dplyr::summarise('Sore Throat'= n())
count_sputum_n <- positive_tested_symptoms %>%
dplyr::select(id, tested_positive, sputum ) %>%
dplyr::rename(group = sputum) %>%
dplyr::group_by(group) %>%
dplyr::summarise('Sputum' = n())
count_temperature_n <- positive_tested_symptoms %>%
dplyr::select(id, tested_positive, temperature) %>%
dplyr::rename(group = temperature) %>%
dplyr::group_by(group) %>%
dplyr::summarise('Temperature' = n())
ch_cho_n <- dplyr::left_join(count_chills_n, count_cough_n, by = c('group'))
ch_cho_diar_n <- dplyr::left_join(ch_cho_n, count_diarrhoea_n, by = c('group'))
ch_cho_diar_fatig_n <- dplyr::left_join(ch_cho_diar_n, count_fatigue_n, by =c('group'))
ch_cho_diar_fatig_head_n <- dplyr::left_join(ch_cho_diar_fatig_n, count_headache_n, by = c('group'))
ch_cho_diar_fatig_head_ache_n <- dplyr::left_join(ch_cho_diar_fatig_head_n, by = c('group'))
ch_cho_diar_fatig_head_ache_cong_n <- dplyr::left_join(ch_cho_diar_fatig_head_ache_n, count_nasal_congestion_n,by = c('group'))
ch_cho_diar_fatig_head_ache_cong_short_n <- dplyr::left_join(ch_cho_diar_fatig_head_ache_cong_n, by = c('group'))
ch_cho_diar_fatig_head_ache_cong_short_sore_n <- dplyr::left_join(ch_cho_diar_fatig_head_ache_cong_short_n, count_sore_throat_n, by = c('group'))
ch_cho_diar_fatig_head_ache_cong_short_sore_sputum_n <- dplyr::left_join(ch_cho_diar_fatig_head_ache_cong_short_sore_n,
count_sputum_n, by = c('group'))
ch_cho_diar_fatig_head_ache_cong_short_sore_sputum_nausea_n <- dplyr::left_join(ch_cho_diar_fatig_head_ache_cong_short_sore_sputum_n,
count_nause_vomiting_n, by = c('group'))
symptom_numbers_n <- ch_cho_diar_fatig_head_ache_cong_short_sore_sputum_nausea_n %>%
dplyr::filter(group != "No")
melted_symptom_counts <- symptom_numbers_n %>%
tidyr::gather(key = "Event",
value = "Value",
Cough,'Shortness of Breath', 'Muscle Ache', Diarrhoea, Fatigue,
Headache, 'Nasal Congestion', 'Nausea and Vomiting',
'Sore Throat', Sputum, Chills) %>%
dplyr::select(group, Event, Value)
title_stub_count <- ": Symptom maping in SARS-COVID-19 positive tested patients,Count\n"
start_date_title <- format(as.Date(start_date), format = "%d %B %Y")
end_date_title <- format(as.Date(end_date), format = "%d %B %Y")
chart_title_count <- paste0(title, title_stub_count, start_date_title, " to ", end_date_title)
melted_symptom_counts$group <- factor(melted_symptom_counts$group)
levels(melted_symptom_counts$group)
melted_symptom_counts$group <- factor(melted_symptom_counts$group,
levels = c("Mild", "Moderate", "Severe"),
labels = c("Mild", "Moderate", "Severe"))
plot_test <- ggplot2::ggplot(melted_symptom_counts, ggplot2::aes(x = reorder(Event, -Value), Value, fill = group)) +
ggplot2::geom_col(ggplot2::aes(colour = group)) +
ggplot2::coord_flip() +
ggplot2::scale_fill_brewer(palette = 'Blues') +
#ggplot2::scale_y_continuous(expand = c(0,0)) +
ggplot2::labs(title = chart_title_count,
subtitle = "\nNote: Results may change due to ongoing refresh of data",
y = "Counts" , x = "Symptoms manifestation in Covid Patients tested positive", caption = "Source: GDHU, Public Health Department, Imperial College") +
ggplot2::theme(axis.title.y = ggplot2::element_text(margin = ggplot2::margin(t = 0, r = 21, b = 0, l = 0)),
plot.title = ggplot2::element_text(size = 12, face = "bold"),
plot.subtitle = ggplot2::element_text(size = 10),
legend.position = "bottom" , legend.box = "horizontal") +
ggplot2::theme_bw()
plot_test
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.