test_that("gpMCMC generates numeric values",{
nsamp <- 100
burn <- 200
thin <- 10
n <- 5
x1 <- seq(-5,10,length.out = n)
x2 <- seq(0,15,length.out = n)
data1 <- expand.grid(x1,x2)
x <- data1
# create hyperparameter matrix of thetas and alphas, alphas set to 0 indicated guassian correlation
d2 <- c(0.01,0.2,0,0)
cor.par <- data.frame(matrix(data = d2,nrow = dim(x)[2],ncol = 2))
names(cor.par) <- c("Theta.y","Alpha.y")
R <- cor.matrix(data1,cor.par) # obtain covariance matrix
L <- chol(R)
z <- as.vector(rnorm(n^2))
y <- t(L)%*%z
gp <- gpMCMC(nsamp,burn,thin,x,y,step = 1)
m1 <- mean(gp$samples[,2]) #these means should be similar to the theta parameters set above
m2 <- mean(gp$samples[,1])
expect_is(m1,"numeric")
expect_is(m2,"numeric")
})
test_that("gpMCMC generates a sample matrix of specific dimensions",{
nsamp <- 100
burn <- 200
thin <- 10
n <- 5
x1 <- seq(-5,10,length.out = n)
x2 <- seq(0,15,length.out = n)
data1 <- expand.grid(x1,x2)
x <- data1
# create hyperparameter matrix of thetas and alphas, alphas set to 0 indicated guassian correlation
d2 <- c(0.01,0.2,0,0)
cor.par <- data.frame(matrix(data = d2,nrow = dim(x)[2],ncol = 2))
names(cor.par) <- c("Theta.y","Alpha.y")
R <- cor.matrix(data1,cor.par) # obtain covariance matrix
L <- chol(R)
z <- as.vector(rnorm(n^2))
y <- t(L)%*%z
gp <- gpMCMC(nsamp,burn,thin,x,y,step = 1)
expect_true(dim(gp$samples)[1] == nsamp)
})
test_that("gpMCMC generates an acceptance vector of specific dimensions",{
nsamp <- 100
burn <- 200
thin <- 10
n <- 5
x1 <- seq(-5,10,length.out = n)
x2 <- seq(0,15,length.out = n)
data1 <- expand.grid(x1,x2)
x <- data1
# create hyperparameter matrix of thetas and alphas, alphas set to 0 indicated guassian correlation
d2 <- c(0.01,0.2,0,0)
cor.par <- data.frame(matrix(data = d2,nrow = dim(x)[2],ncol = 2))
names(cor.par) <- c("Theta.y","Alpha.y")
R <- cor.matrix(data1,cor.par) # obtain covariance matrix
L <- chol(R)
z <- as.vector(rnorm(n^2))
y <- t(L)%*%z
gp <- gpMCMC(nsamp,burn,thin,x,y,step = 1,method = "uniform")
expect_true(length(gp$acceptance) == 4)
})
test_that("gpMCMC generates an acceptance vector of specific dimensions, again for normally distributed steps",{
nsamp <- 100
burn <- 200
thin <- 10
n <- 5
x1 <- seq(-5,10,length.out = n)
x2 <- seq(0,15,length.out = n)
data1 <- expand.grid(x1,x2)
x <- data1
# create hyperparameter matrix of thetas and alphas, alphas set to 0 indicated guassian correlation
d2 <- c(0.01,0.2,0,0)
cor.par <- data.frame(matrix(data = d2,nrow = dim(x)[2],ncol = 2))
names(cor.par) <- c("Theta.y","Alpha.y")
R <- cor.matrix(data1,cor.par) # obtain covariance matrix
L <- chol(R)
z <- as.vector(rnorm(n^2))
y <- t(L)%*%z
gp <- gpMCMC(nsamp,burn,thin,x,y,step = 1,method = "normal")
expect_true(length(gp$acceptance) == 4)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.