projectR | R Documentation |
A function for the projection of new data into a previously defined feature space.
projectR(data, loadings, dataNames = NULL, loadingsNames = NULL, ...)
## S4 method for signature 'matrix,matrix'
projectR(
data,
loadings,
dataNames = NULL,
loadingsNames = NULL,
NP = NA,
full = FALSE,
bootstrapPval = FALSE,
bootIter = 1000
)
## S4 method for signature 'dgCMatrix,matrix'
projectR(
data,
loadings,
dataNames = NULL,
loadingsNames = NULL,
NP = NULL,
full = FALSE
)
## S4 method for signature 'matrix,LinearEmbeddingMatrix'
projectR(
data,
loadings,
dataNames = NULL,
loadingsNames = NULL,
NP = NA,
full = FALSE,
model = NA,
bootstrapPval = FALSE,
bootIter = 1000
)
## S4 method for signature 'matrix,prcomp'
projectR(
data,
loadings,
dataNames = NULL,
loadingsNames = NULL,
NP = NA,
full = FALSE
)
## S4 method for signature 'matrix,rotatoR'
projectR(
data,
loadings,
dataNames = NULL,
loadingsNames = NULL,
NP = NA,
full = FALSE
)
## S4 method for signature 'matrix,correlateR'
projectR(
data,
loadings,
dataNames = NULL,
loadingsNames = NULL,
NP = NA,
full = FALSE,
bootstrapPval = FALSE,
bootIter = 1000
)
## S4 method for signature 'matrix,hclust'
projectR(
data,
loadings,
dataNames = NULL,
loadingsNames = NULL,
full = FALSE,
targetNumPatterns,
sourceData,
bootstrapPval = FALSE,
bootIter = 1000
)
## S4 method for signature 'matrix,kmeans'
projectR(
data,
loadings,
dataNames = NULL,
loadingsNames = NULL,
full = FALSE,
sourceData,
bootstrapPval = FALSE,
bootIter = 1000
)
## S4 method for signature 'matrix,cluster2pattern'
projectR(
data,
loadings,
dataNames = NULL,
loadingsNames = NULL,
full = FALSE,
sourceData,
bootstrapPval = FALSE,
bootIter = 1000
)
data |
Target dataset into which you will project. It must of type matrix. |
loadings |
loadings learned from source dataset. |
dataNames |
a vector containing unique name, i.e. gene names, for the rows of the target dataset to be used to match features with the loadings, if not provided by |
loadingsNames |
a vector containing unique names, i.e. gene names, for the rows ofloadings to be used to match features with the data, if not provided by |
... |
Additional arguments to projectR |
NP |
vector of integers indicating which columns of loadings object to use. The default of NP=NA will use entire matrix. |
full |
logical indicating whether to return the full model solution. By default only the new pattern object is returned. |
bootstrapPval |
logical to indicate whether to generate p-values using bootstrap, not available for prcomp and rotatoR objects |
bootIter |
number of bootstrap iterations, default = 1000 |
model |
Optional arguements to choose method for projection |
targetNumPatterns |
desired number of patterns with hclust |
sourceData |
data used to create cluster object |
loadings
can belong to one of several classes depending on upstream
analysis. Currently permitted classes are matrix
, CogapsResult
,
CoGAPS
, pclust
, prcomp
, rotatoR
,
and correlateR
. Please note that loadings
should not contain NA.
A matrix of sample weights for each input basis in the loadings matrix (if full=TRUE, full model solution is returned).
projectR(data=p.ESepiGen4c1l$mRNA.Seq,loadings=AP.RNAseq6l3c3t$Amean,
dataNames = map.ESepiGen4c1l[["GeneSymbols"]])
library("CoGAPS")
# CR.RNAseq6l3c3t <- CoGAPS(p.RNAseq6l3c3t, params = new("CogapsParams", nPatterns=5))
projectR(data=p.ESepiGen4c1l$mRNA.Seq,loadings=CR.RNAseq6l3c3t,
dataNames = map.ESepiGen4c1l[["GeneSymbols"]])
pca.RNAseq6l3c3t<-prcomp(t(p.RNAseq6l3c3t))
pca.ESepiGen4c1l<-projectR(data=p.ESepiGen4c1l$mRNA.Seq,
loadings=pca.RNAseq6l3c3t, dataNames = map.ESepiGen4c1l[["GeneSymbols"]])
pca.RNAseq6l3c3t<-prcomp(t(p.RNAseq6l3c3t))
r.RNAseq6l3c3t<-rotatoR(1,1,-1,-1,pca.RNAseq6l3c3t$rotation[,1:2])
pca.ESepiGen4c1l<-projectR(data=p.ESepiGen4c1l$mRNA.Seq,
loadings=r.RNAseq6l3c3t, dataNames = map.ESepiGen4c1l[["GeneSymbols"]])
c.RNAseq6l3c3t<-correlateR(genes="T", dat=p.RNAseq6l3c3t, threshtype="N",
threshold=10, absR=TRUE)
cor.ESepiGen4c1l<-projectR(data=p.ESepiGen4c1l$mRNA.Seq, loadings=c.RNAseq6l3c3t,
NP="PositiveCOR", dataNames = map.ESepiGen4c1l[["GeneSymbols"]])
library("projectR")
data(p.RNAseq6l3c3t)
nP<-3
kClust<-kmeans(t(p.RNAseq6l3c3t),centers=nP)
kpattern<-cluster2pattern(clusters = kClust, NP = nP, data = p.RNAseq6l3c3t)
p<-as.matrix(p.RNAseq6l3c3t)
projectR(p,kpattern)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.