# Fit an empirical Bayes Cox model using
# simulated, illness-death data from 250
# patients ('mstate_data_sample').
#load simulated data
data("mstate_data_sample")
# Set class of ‘mstate_data_sample’
class(mstate_data_sample)<-c("data.frame","msdata")
# add transition matrix as attribute
tmat<-mstate::transMat(x=list(c(2,3),c(4),c(),c()),
names=c("health","illness","death",
"death_after_illness"))
attr(mstate_data_sample,"trans")<-tmat
# expand covariates by transition:
covariates.expanded<-mstate::expand.covs(
mstate_data_sample,
covs=names(mstate_data_sample)
[!names(mstate_data_sample)%in%c("id","from",
"to","trans","Tstart","Tstop","time","status",
"strata")],append=FALSE)
# argument ‘Z’ of coxrfx
Z<-data.frame(covariates.expanded,
trans=mstate_data_sample$trans,
strata=mstate_data_sample$trans)
# argument ‘surv’ for a non-homogeneous
# Markov model
surv<-survival::Surv(mstate_data_sample$Tstart,
mstate_data_sample$Tstop,
mstate_data_sample$status)
# argument ‘groups’ of coxrfx
groups<-paste0(rep("group", ncol(Z)-2),c("_1","_2","_3"))
#fit random effects model
coxrfx_object<-CoxRFX(Z,surv,groups,tmat)
#show point estimates
summary(coxrfx_object)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.