stat_QC_labels: Write QC Line Labels to ggplot QC Charts.

Description Usage Arguments Value Examples

View source: R/04_stat_qc.R

Description

Write QC line labels to ggplot QC Charts. Useful if you want to see the value of the center line and QC limits. see method argument for methods supported.

Usage

1
2
3
4
5
stat_QC_labels(mapping = NULL, data = NULL, geom = "label",
  position = "identity", na.rm = FALSE, show.legend = NA,
  inherit.aes = TRUE, n = NULL, digits = 1, method = "xBar.rBar",
  color.qc_limits = "red", color.qc_center = "black", text.size = 3,
  physical.limits = c(NA, NA), limit.txt.label = c("LCL", "UCL"), ...)

Arguments

mapping

Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data.

geom

The geometric object to use display the data

position

Position adjustment, either as a string, or the result of a call to a position adjustment function.

na.rm

a logical value indicating whether NA values should be stripped before the computation proceeds.

show.legend

logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes

If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

n

number, for

  • Studentized Charts, used for custom or hypothetical subgroup size.

  • np Charts, used to specify a fixed area of opportunity.

digits

integer, indicating the number of decimal places

method

string, calling the following methods:

  • Individuals Charts: mR, XmR,

  • Attribute Charts: c, np, p, u,

  • Studentized Charts: xBar.rBar, xBar.rMedian, xBar.sBar, xMedian.rBar, xMedian.rMedian

  • Dispersion Charts: rBar, rMedian, sBar.

color.qc_limits

color, used to colorize the plot's upper and lower mR control limits.

color.qc_center

color, used to colorize the plot's center line.

text.size

number, size of the text label

physical.limits

vector, specify lower physical boundary and upper physical boundary

limit.txt.label

vector, provides option for naming or not showing the limit text labels (e.g., UCL, LCL)

  • limit.txt.label = c("LCL", "UCL"): default

  • limit.txt.label = c("Low", "High"): changes the label text to low and high

  • limit.txt.label = NA: does not show label text.

...

Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also be parameters to the paired geom/stat.

Value

data need to produce the mR plot in ggplot.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#########################
#  Example 1: mR Chart  #
#########################

# Load Libraries ----------------------------------------------------------
 require(ggQC)
 require(ggplot2)

# Setup Data --------------------------------------------------------------
 set.seed(5555)
 Process1 <- data.frame(processID = as.factor(rep(1,100)),
                        metric_value = rnorm(100,0,1),
                        subgroup_sample=rep(1:20, each=5),
                        Process_run_id = 1:100)
 set.seed(5556)
 Process2 <- data.frame(processID = as.factor(rep(2,100)),
                        metric_value = rnorm(100,5, 1),
                        subgroup_sample=rep(1:10, each=10),
                        Process_run_id = 101:200)

 Both_Processes <- rbind(Process1, Process2)

# Facet Plot - Both Processes ---------------------------------------------
EX1.1 <- ggplot(Both_Processes, aes(x=Process_run_id, y = metric_value)) +
 geom_point() + geom_line() + stat_QC(method="XmR") +
 stat_QC_labels(method="XmR", digits = 2) +
 facet_grid(.~processID, scales = "free_x")
#EX1.1

EX1.2 <- ggplot(Both_Processes, aes(x=Process_run_id, y = metric_value)) +
 stat_mR() + ylab("Moving Range") +
 stat_QC_labels(method="mR", digits = 2) +
 facet_grid(.~processID, scales = "free_x")
#EX1.2

#############################
#  Example 2:  XbarR Chart  #
#############################
# Facet Plot - Studentized Process ----------------------------------------

EX2.1 <- ggplot(Both_Processes, aes(x=subgroup_sample,
                          y = metric_value,
                          group = processID)) +
 geom_point(alpha=.2) +
 stat_summary(fun.y = "mean", color="blue", geom=c("point")) +
 stat_summary(fun.y = "mean", color="blue", geom=c("line")) +
 stat_QC() + facet_grid(.~processID, scales = "free_x") +
 stat_QC_labels(text.size =3, label.size=.1)
#EX2.1

EX2.2 <- ggplot(Both_Processes, aes(x=subgroup_sample,
                          y = metric_value,
                          group = processID)) +
 stat_summary(fun.y = "QCrange", color="blue", geom = "point") +
 stat_summary(fun.y = "QCrange", color="blue", geom = "line") +
 stat_QC(method="rBar") +
 stat_QC_labels(digits=2, method="rBar") +
 ylab("Range") +
 facet_grid(.~processID, scales = "free_x")
 #EX2.2

ggmtech/ggQC documentation built on Dec. 20, 2021, 10:43 a.m.