QC_Lines: Calculate QC Limits

Description Usage Arguments Value Note References Examples

View source: R/03_Summay_FUNs.R

Description

Calculates QC chart lines for the following chart types and reports in a dataframe:

Usage

1
2
QC_Lines(data = NULL, value = NULL, grouping = NULL,
  formula = NULL, n = NULL, method = "xBar.rBar", na.rm = FALSE)

Arguments

data

vector or dataframe, as indicated below for each chart type

  • Individuals & Attribute Charts: vector of values;

  • Studentized & Dispersion Charts: dataframe

value

string, Studentized Charts and Dispersion Charts, numeric vector in dataframe with values of interest

grouping

string, Studentized Charts and Dispersion Charts: single factor/variable to split the dataframe "values" by

formula

Studentized Charts and Dispersion Charts: a formula, such as y ~ x1 + x2, where the y variable is numeric data to be split into groups according to the grouping x factors/variables

n

number or vector as indicated below for each chart type.

  • Individuals Charts: No effect

  • Attribute Charts: (p and u) vector, indicating sample area of opportunity.

  • Attribute Charts: (np) number, indicating constant sampling area of opportunity.

  • Studentized Charts: number, user specified subgroup size.

  • Dispersion Charts: No effect

method

string, calling the following methods:

  • Individuals Charts: mR, XmR,

  • Attribute Charts: c, np, p, u,

  • Studentized Charts: xBar.rBar, xBar.rMedian, xBar.sBar, xMedian.rBar, xMedian.rMedian

  • Dispersion Charts: rBar, rMedian, sBar.

na.rm

a logical value indicating whether NA values should be stripped before the computation proceeds.

Value

a dataframe,

Note

If using the formula argument do not use value and group arguments.

References

Wheeler, DJ, and DS Chambers. Understanding Statistical Process Control, 2nd Ed. Knoxville, TN: SPC, 1992. Print.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#############################################
#  Example 1: Charts other than "p" or "u"  #
#############################################

# Load Libraries ----------------------------------------------------------
 require(ggQC)
 require(plyr)
 require(ggplot2)

# Setup Data --------------------------------------------------------------
 set.seed(5555)
 Process1 <- data.frame(processID = as.factor(rep(1,100)),
                        metric_value = rnorm(100,0,1),
                        subgroup_sample=rep(1:20, each=5),
                        Process_run_id = 1:100)
 set.seed(5555)
 Process2 <- data.frame(processID = as.factor(rep(2,100)),
                        metric_value = rnorm(100,5, 1),
                        subgroup_sample=rep(1:10, each=10),
                        Process_run_id = 101:200)

 Both_Processes <- rbind(Process1, Process2)

# QC Values For Individuals -----------------------------------------------
 # All Together
   QC_Lines(data = Both_Processes$metric_value, method = "XmR")


 # For Each Process
   ddply(Both_Processes, .variables = "processID",
     .fun =function(df){
       QC_Lines(data = df$metric_value, method = "XmR")
     }
   )

# QC Values For Studentized Runs-------------------------------------------
 # All Together
   QC_Lines(data = Both_Processes,
        formula = metric_value ~ subgroup_sample)


 # For Each Process
   ddply(Both_Processes, .variables = "processID",
     .fun =function(df){
       QC_Lines(data = df, formula = metric_value ~ subgroup_sample)
     }
   )


########################
#  Example 2 "p" data  #
########################

# Setup p Data ------------------------------------------------------------
 set.seed(5555)
 bin_data <- data.frame(
   trial = 1:30,
   Num_Incomplete_Items = rpois(n = 30, lambda = 30),
   Num_Items_in_Set = runif(n = 30, min = 50, max = 100))

 bin_data$Proportion_Incomplete <- bin_data$Num_Incomplete_Items/bin_data$Num_Items_in_Set

# QC_Lines for "p" data ---------------------------------------------------
 QC_Lines(data = bin_data$Proportion_Incomplete,
        n = bin_data$Num_Items_in_Set, method="p")


########################
#  Example 3 "u" data  #
########################

# Setup u Data ------------------------------------------------------------
 set.seed(5555)
 bin_data <- data.frame(
   trial=1:30,
   Num_of_Blemishes = rpois(n = 30, lambda = 30),
   Num_Items_Inspected = runif(n = 30, min = 50, max = 100))

 bin_data$Blemish_Rate <- bin_data$Num_of_Blemishes/bin_data$Num_Items_Inspected


# QC Lines for "u" data ---------------------------------------------------
 QC_Lines(data = bin_data$Blemish_Rate,
        n = bin_data$Num_Items_Inspected, method="u")

ggmtech/ggQC documentation built on Dec. 20, 2021, 10:43 a.m.