Fit_Single_Hill: Estimate parameters in Hill model families

Description Usage Arguments Value Author(s)

View source: R/Fit_Single_Hill.R

Description

Estimate parameters in single-compound dose-reponse models under some of the Hill model families (2,3,4 parameters)

Parameters

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
Fit_Single_Hill(
  x,
  y,
  n,
  SCDR_model = c("Hill2", "Hill3", "Hill4"),
  lower = c(1e-04, 1e-04, 1e-04, 1e-04),
  upper = c(10, 10, 1, 1),
  bootstrap = FALSE,
  B = 100,
  select = FALSE,
  eps = 1e-15,
  verbose = TRUE
)

Arguments

x

sequence of dose input

y

sequence of responses

n

number of binomial samples at various dose values

SCDR_model

one of 2-4 parameter Hill function

lower

lower limits for the search of parameter

upper

upper limits for the search of parameter

bootstrap

logical resampling for estimating parameter variability

B

number of bootstrap resampling

select

TRUE/FALSE perform model selection

eps

used to replace 0's by small numerical values

verbose

will print the percentage of computation carried out if TRUE

Value

Estimate of Hill model(s) parameters and bootstrap sample for this estimate Perform model selection by cross-validation Return estimate of 50 NB: 50

Detail Model assumed: y ~ B(n,f(x)) Hill models: Hill 4: f(x) = d + (c-d) / ( 1+ (a/x)**b) Hill 3: d=0 Hill 2: d=0 ; c=1 ML estimation, optimization of log likelihood with Generalized Simulated Annealing (GenSA::GenSA)

0 doses bring numerical issues 0's in x and y replaced by min(x) * 1e-9 / min(y) * 1e-9

Model selection with leave-"some"-out likelihood cross-validation "some" = all obs receiving a certain dose level

Author(s)

Gilles Guillot gilles.b.guillot@gmail.com


gilles-guillot/MDR documentation built on Jan. 21, 2020, 8:09 a.m.