library("tidyverse") library(ggpubr) library(ggrepel) library(permute) source(file.path(".","..","R","ASE_functions.R")) source(file.path(".","..","R","PerformDiffAIAnalysisFor2Conditions.R"))
removeX <- function(DF, legitim_chrgenes){ return(DF[DF$ensembl_gene_id %in% legitim_chrgenes$gene, ]) } chrgenes = read.delim('../../../data/Mus_musculus.GRCm38.68.chrgenes.txt', col.names = c('chr', 'gene')) <<<<<<< HEAD inTabs = paste0("../../../data/kidney/full/", ======= inTabs = paste0("../../../data/full/", >>>>>>> 0baed79b8e8920b5db571b64615054ef0729bde7 c("NEB", "SMARTseq10ng", "SMARTseq100pg"), "_processed_gene_extended2.txt") inDF18 = removeX(GetGatkPipelineTabs(inTabs, c(6,6,6)), chrgenes) inDF18
TABLES GENERATION NEB 1,2 and SMART10ng 10,11 were taken:
S10_10_11_AverageAI = CountsToAI(inDF18, reps=10:11, meth="meanOfProportions") S10_10_11_SumCoverage = round(rowSums(inDF18[, (10*2):(11*2+1)])) # N_1_2_AIofAverage = CountsToAI(inDF18, reps=5:6) N_1_2_AverageAI = CountsToAI(inDF18, reps=1:2, meth="meanOfProportions") N_1_2_SumCoverage = round(rowSums(inDF18[, (1*2):(2*2+1)])) S10_AI = do.call(cbind, lapply(7:12, function(i){CountsToAI(data.frame(inDF18), reps=i)}))[S10_10_11_SumCoverage > 20 & N_1_2_SumCoverage > 20, ] N_AI = do.call(cbind, lapply(c(1:3,5,6), function(i){CountsToAI(data.frame(inDF18), reps=i)}))[S10_10_11_SumCoverage > 20 & N_1_2_SumCoverage > 20, ] S10_mAI = CountsToAI(data.frame(inDF18), reps=7:12)[S10_10_11_SumCoverage > 20 & N_1_2_SumCoverage > 20] N_mAI = CountsToAI(data.frame(inDF18), reps=c(1:3,5,6))[S10_10_11_SumCoverage > 20 & N_1_2_SumCoverage > 20] S10_10_11_aicov = data.frame(scov = S10_10_11_SumCoverage, ai = S10_10_11_AverageAI)[S10_10_11_SumCoverage > 20 & N_1_2_SumCoverage > 20, ] N_1_2_aicov = data.frame(scov = N_1_2_SumCoverage, ai = N_1_2_AverageAI)[S10_10_11_SumCoverage > 20 & N_1_2_SumCoverage > 20, ] p = 0.025/nrow(S10_10_11_aicov) S10_10_11_CIs = t(sapply(1:nrow(S10_10_11_aicov), function(r){ c(qbinom(p, S10_10_11_aicov$scov[r], S10_10_11_aicov$ai[r], lower.tail = TRUE, log.p = FALSE), qbinom(1-p, S10_10_11_aicov$scov[r], S10_10_11_aicov$ai[r], lower.tail = TRUE, log.p = FALSE)) })) N_1_2_CIs = t(sapply(1:nrow(N_1_2_aicov), function(r){ c(qbinom(p, N_1_2_aicov$scov[r], N_1_2_aicov$ai[r], lower.tail = TRUE, log.p = FALSE), qbinom(1-p, N_1_2_aicov$scov[r], N_1_2_aicov$ai[r], lower.tail = TRUE, log.p = FALSE)) })) RES2BIN = data.frame(round(N_1_2_CIs/N_1_2_aicov$scov, 3), round(S10_10_11_CIs/S10_10_11_aicov$scov, 3)) RES2BIN$diffAI = ((RES2BIN[, 2] < RES2BIN[, 3]) | (RES2BIN[, 1] > RES2BIN[, 4])) names(RES2BIN)[1:4] = c("meanAI1Low", "meanAI1High", "meanAI2Low", "meanAI2High") RES2BIN
RES2_S10N = PerformDiffAIAnalysisFor2Conditions(inDF18, vect1CondReps=1:2, vect2CondReps=10:11, Q=0.95, fullOUT=T, BF=T) RES2OUR0 = RES2_S10N[[4]][RES2_S10N[[4]]$ID %in% inDF18[S10_10_11_SumCoverage > 20 & N_1_2_SumCoverage > 20, 1], ] RES2OUR = RES2OUR0[, c("meanAI1Low", "meanAI1High", "meanAI2Low", "meanAI2High", "diffAI")] RES2OUR[, 1:4] = round(RES2OUR[, 1:4], 3) RES2OUR
FALSE NEGATIVE binomial results:
X = (1:nrow(RES2OUR))[RES2OUR$diffAI==T & RES2BIN$diffAI==F & S10_10_11_aicov$scov>200 & N_1_2_aicov$scov>200 & abs(S10_mAI-N_mAI)>0.15 & <<<<<<< HEAD (N_mAI<0.5 & S10_mAI>0.5 | S10_mAI<0.5 & N_mAI>0.5)] ======= (N_mAI<0.5 & S10_mAI>0.5 | S10_mAI<0.5 & N_mAI>0.5) & RES2OUR$meanAI1Low < N_mAI & N_mAI < RES2OUR$meanAI1High& RES2OUR$meanAI2Low < N_mAI & S10_mAI < RES2OUR$meanAI2High] >>>>>>> 0baed79b8e8920b5db571b64615054ef0729bde7 X data.frame(RES2OUR[X, 1:4], x = "_______FN", RES2BIN[X, 1:4]) data.frame(a1 = N_1_2_aicov$ai[X], A1 = N_mAI[X], a2 = S10_10_11_aicov$ai[X], A2 = S10_mAI[X], c1 = N_1_2_aicov$scov[X], c2 = S10_10_11_aicov$scov[X], (N_AI[X, 1:2]), (S10_AI[X, 4:5])) ## Looking at genes: inDF18[inDF18$ensembl_gene_id == RES2OUR0$ID[ X[length(X)-2] ], c(1, 2:5, 20:23)]
FALSE POSITIVE binomial:
Y = (1:nrow(RES2OUR))[RES2OUR$diffAI==F & RES2BIN$diffAI==T] Y = Y[!is.na(Y)] data.frame(RES2OUR[Y, 1:4], x = "_______FP", RES2BIN[Y, 1:4]) data.frame(a1 = N_1_2_aicov$ai[Y], A1 = N_mAI[Y], a2 = S10_10_11_aicov$ai[Y], A2 = S10_mAI[Y], c1 = N_1_2_aicov$scov[Y], c2 = S10_10_11_aicov$scov[Y], (N_AI[Y, 1:2]), (S10_AI[Y, 4:5]))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.