Performance.Dyad.Model.7.lag = function(N.dyad,T.obs,
c.F,c.M,rho.YF,rho.YM,a.FF,p.MF,a.MM,p.FM,
d.F,d.M,d.FF,d.MF,d.MM,d.FM,
sigma.eps.F,sigma.eps.M,rho.eps.FM,
sigma.nu.F,sigma.nu.M,rho.nu.F.M,
mu.XF,sigma.XF,mu.XM,sigma.XM,rho.X,
prob.D,is.center.X,alpha,is.REML){
# Generate data
data = Sim.Dyad.Model.7.lag(N.dyad,T.obs,
c.F,c.M,rho.YF,rho.YM,a.FF,p.MF,a.MM,p.FM,
d.F,d.M,d.FF,d.MF,d.MM,d.FM,
sigma.eps.F,sigma.eps.M,rho.eps.FM,
sigma.nu.F,sigma.nu.M,rho.nu.F.M,
mu.XF,sigma.XF,mu.XM,sigma.XM,rho.X,
prob.D,is.center.X)
# Fit multilevel model
if(is.center.X==TRUE){
# Person-centered the predictors
data <- data %>%
group_by(subject.ID,dyad.ID) %>%
mutate(X.Actor = X.Actor - mean(X.Actor),
X.Partner = X.Partner - mean(X.Partner))
}
# Compute interactions
data$X.Actor.D = data$X.Actor*data$D
data$X.Partner.D = data$X.Partner*data$D
# Model estimation
if (is.REML==TRUE){
fit.Model.7 = lme(fixed = Y ~ -1 + Female + Female:Y.lag +
Female:X.Actor + Female:X.Partner + Female:D
+ Female:X.Actor.D + Female:X.Partner.D +
Male + Male:Y.lag +
Male:X.Actor + Male:X.Partner + Male:D +
Male:X.Actor.D + Male:X.Partner.D,
random = ~ -1 + Female + Male|dyad.ID,
correlation = corCompSymm(form = ~1|dyad.ID/Obs),
weights = varIdent(form = ~1|Gender),
data = data, na.action=na.omit,
method = 'REML',
control=list(msVerbose=TRUE, maxIter=500, msMaxIter=500))
}
if (is.REML==FALSE){
fit.Model.7 = lme(fixed = Y ~ -1 + Female + Female:Y.lag +
Female:X.Actor + Female:X.Partner + Female:D
+ Female:X.Actor.D + Female:X.Partner.D +
Male + Male:Y.lag +
Male:X.Actor + Male:X.Partner + Male:D +
Male:X.Actor.D + Male:X.Partner.D,
random = ~ -1 + Female + Male|dyad.ID,
correlation = corCompSymm(form = ~1|dyad.ID/Obs),
weights = varIdent(form = ~1|Gender),
data = data, na.action=na.omit,
method = 'ML',
control=list(msVerbose=TRUE, maxIter=500, msMaxIter=500))
}
# Performance measures
# Fixed Effects
# Estimated values
coef = coef(summary(fit.Model.7))[,1]
# Bias
bias = coef(summary(fit.Model.7))[,1] - c(c.F,c.M,rho.YF,a.FF,p.MF,d.F,d.FF,d.MF,rho.YM,a.MM,p.FM,d.M,d.MM,d.FM)
# Power
power = coef(summary(fit.Model.7))[,5]<alpha
# Coverage rate
CI = intervals(fit.Model.7, level = 1-alpha, which = "fixed")$fixed
CI.width = CI[,3] - CI[,1]
CR = CI[,1] < c(c.F,c.M,rho.YF,a.FF,p.MF,d.F,d.FF,d.MF,rho.YM,a.MM,p.FM,d.M,d.MM,d.FM) & CI[,3] > c(c.F,c.M,rho.YF,a.FF,p.MF,d.F,d.FF,d.MF,rho.YM,a.MM,p.FM,d.M,d.MM,d.FM)
summary.fixed.effect = list(coef=coef,bias=bias,power=power,CI.width=CI.width,CR=CR)
# Variance components
Sigma.hat = VarCorr(fit.Model.7)
Sigma.weight.hat = 1/unique(varWeights(fit.Model.7$modelStruct$varStruct))
sigma.eps.F.hat = as.numeric(Sigma.hat['Residual',2])*Sigma.weight.hat[1]
sigma.eps.M.hat = as.numeric(Sigma.hat['Residual',2])*Sigma.weight.hat[2]
rho.eps.FM.hat = as.numeric(coef(fit.Model.7$modelStruct$corStruct,unconstrained=FALSE))
sigma.nu.F.hat = as.numeric(Sigma.hat['Female',2])
sigma.nu.M.hat = as.numeric(Sigma.hat['Male',2])
rho.nu.F.M.hat = as.numeric(Sigma.hat['Male',3])
sigma.eps.F.bias = sigma.eps.F.hat - sigma.eps.F
sigma.eps.M.bias = sigma.eps.M.hat - sigma.eps.M
rho.eps.FM.bias = rho.eps.FM.hat - rho.eps.FM
sigma.nu.F.bias = sigma.nu.F.hat - sigma.nu.F
sigma.nu.M.bias = sigma.nu.M.hat - sigma.nu.M
rho.nu.F.M.bias = rho.nu.F.M.hat - rho.nu.F.M
summary.var.hat = c(sigma.eps.F.hat=sigma.eps.F.hat,sigma.eps.M.hat=sigma.eps.M.hat,
rho.eps.FM.hat=rho.eps.FM.hat,sigma.nu.F.hat=sigma.nu.F.hat,sigma.nu.M.hat=sigma.nu.M.hat,rho.nu.F.M.hat=rho.nu.F.M.hat)
summary.var.bias = c(sigma.eps.F.bias=sigma.eps.F.bias,
sigma.eps.M.bias=sigma.eps.M.bias,rho.eps.FM.bias=rho.eps.FM.bias,
sigma.nu.F.bias=sigma.nu.F.bias,sigma.nu.M.bias=sigma.nu.M.bias,
rho.nu.F.M.bias=rho.nu.F.M.bias)
return(list(summary.fixed.effect=summary.fixed.effect,summary.var.hat=summary.var.hat,summary.var.bias=summary.var.bias))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.