Description Usage Arguments Value Well Known Data Sets Additional Data Sets Author(s) References Examples
Robert J. Hijmans getData() from the raster package is well known and highly used. The only disadvantage is that it currently doesn't support a bunch of great additional and/or improved/newer data sets. getGeoData provides some more actual or better choices for climate and DEM data as well as some easy to use interfaces to OSM and other crowd sourced data compilations. The main issue of the functionis to offer an easy to use access to a wider range of free to access data sets that may improve significantly the quality of typical ecological and other spatial analysis approaches by an straightforward utilization of data. You may download the data individually but by default all data will be downloaded georeferenced and converted in raster or sp objects.
1 2 | getGeoData(name, download=TRUE, path='', ...)
ccodes()
|
name |
Data set name, currently supported are:
|
download |
Logical |
path |
Character Path name indicating where to store the data. Default is the current working directory |
... |
Additional required (!) parameters. These are data set specific. See Details |
A spatial object (Raster* or Spatial*)
GADM
is a database of global administrative boundaries.
alt
stands for altitude (elevation); the data were aggregated from SRTM 90 m resolution data between -60 and 60 latitude.
countries
has polygons for all countries at a higher resolution than the 'wrld_simpl' data
in the maptools pacakge .
If name
='alt' or name
='GADM' you must provide a 'country=' argument. Countries are specified by their 3 letter ISO codes. Use getData('ISO3') to see these codes. In the case of GADM you must also provide the level of administrative subdivision (0=country, 1=first level subdivision). In the case of alt you can set 'mask' to FALSE. If it is TRUE values for neighbouring countries are set to NA. For example:
getGeoData('GADM', country='FRA', level=1)
getGeoData('alt', country='FRA', mask=TRUE)
SRTM
refers to the 4.1 version of the CGIAR-SRTM (90 m resolution).
If name
='SRTM' you must provide at least the extent of an area as argument (minlong,minlat,maxlong,maxlat).
If name
=CMIP5 for (projected) future climate data you must provide arguments var and res as above. Only resolutions 2.5, 5, and 10 are currently available. In addition, you need to provide model, rcp and year.
For example:
getGeoData('CMIP5', var='tmin', res=10, rcp=85, model='AC', year=70)
function (var, model, rcp, year, res, lon, lat, path, download = TRUE)
'model' should be one of "AC", "BC", "CC", "CE", "CN", "GF", "GD", "GS", "HD", "HG", "HE", "IN", "IP", "MI", "MR", "MC", "MP", "MG", or "NO".
'rcp' should be one of 26, 45, 60, or 85.
'year' should be 50 or 70
Not all combinations are available. See www.worldclim.org for details.
worldclim
is a database of global interpolated climate data.
If name
='worldclim' you must also provide a variable name 'var=', and a resolution 'res='. Valid variables names are 'tmin', 'tmax', 'prec' and 'bio'. Valid resolutions are 0.5, 2.5, 5, and 10 (minutes of a degree). In the case of res=0.5, you must also provide a lon and lat argument for a tile; for the lower resolutions global data will be downloaded. In all cases there are 12 (monthly) files for each variable except for 'bio' which contains 19 files.
getGeoData('worldclim', var='tmin', res=0.5, lon=5, lat=45)
getGeoData('worldclim', var='bio', res=10)
schmatzPangea
provides the gridded climate data from 5 Global Climate Models (GCM) of the Last Glacial Maximum (LGM) downscaled to 30 arc seconds for Europe http://doi.pangaea.de/10.1594/PANGAEA.845883
If name
='schmatzPangea' you have to specify the item of interest. Please note: The data download may take a long time!
The list of allowd items is (long):
prec_eu_wc_30s
baseline climate precipitation, Worldclim LGM coastline, current, 30x30sec , http://hs.pangaea.de/model/schmatz/prec_eu_wc_30s
tave_eu_wcpi_30s
baseline climate average surface air temperature, Worldclim LGM coastline, preindustrial, 30x30sec , http://hs.pangaea.de/model/schmatz/tave_eu_wcpi_30s
tmax_eu_wcpi_30s
baseline climate maximum surface air temperature, Worldclim LGM coastline, preindustrial, 30x30sec , http://hs.pangaea.de/model/schmatz/tmax_eu_wcpi_30s
tmin_eu_wcpi_30s
baseline climate minimum surface air temperature, Worldclim LGM coastline, preindustrial, 30x30sec , http://hs.pangaea.de/model/schmatz/tmin_eu_wcpi_30s
prec_*,tave_*,tmax_*,tmin_*
: startTime = 1
is equivalent to LGM average Januar endTime = 12
is equivalent to LGM average december
bioclim_A_MO_pmip2_21k_oa_CCSM_eu_30s
bioclimatic variables 19 bioclimatic variables, CCSM, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/bioclim_A_MO_pmip2_21k_oa_CCSM_eu_30s
bioclim_A_MO_pmip2_21k_oa_CNRM_eu_30s
bioclimatic variables 19 bioclimatic variables, CNRM, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/bioclim_A_MO_pmip2_21k_oa_CNRM_eu_30s
bioclim_A_MO_pmip2_21k_oa_FGOALS_eu_30s
bioclimatic variables 19 bioclimatic variables, FGOALS, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/bioclim_A_MO_pmip2_21k_oa_FGOALS_eu_30s
bioclim_A_MO_pmip2_21k_oa_IPSL_eu_30s
bioclimatic variables 19 bioclimatic variables, IPSL, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/bioclim_A_MO_pmip2_21k_oa_IPSL_eu_30s
bioclim_A_MO_pmip2_21k_oa_MIROC3.2_eu_30s
bioclimatic variables 19 bioclimatic variables, MIROC3.2, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/bioclim_A_MO_pmip2_21k_oa_MIROC3.2_eu_30s
bioclim_*
: startTime = 1
is equivalent to LGM average year endTime = 1
is equvalent to LGM average year
#'
bio_1
Annual Mean Temperature ; units = "C*10" ; FillValue = -9999 ; missing_value = -9999
bio_2
Mean Diurnal Range (Mean(period max-min))" ; units = "C*10" ; FillValue = -9999 ; missing_value = -9999
bio_3
Isothermality (P2 / P7)" ; units = "C*10" ; FillValue = -9999 ; missing_value = -9999
bio_4
Temperature Seasonality (standard deviation)" ; units = "C*10" ; FillValue = -9999 ; missing_value = -9999
bio_5
Max Temperature of Warmest Period" ; units = "C*10" ; FillValue = -9999 ; missing_value = -9999
bio_6
Min Temperature of Coldest Period" ; units = "C*10" ; FillValue = -9999 ; missing_value = -9999
bio_7
Temperature Annual Range (P5-P6)" ; units = "C*10" ; FillValue = -9999 ; missing_value = -9999
bio_8
Mean Temperature of Wettest Quarter" ; units = "C*10" ; FillValue = -9999 ; missing_value = -9999
bio_9
Mean Temperature of Driest Quarter" ; units = "C*10" ; FillValue = -9999 ; missing_value = -9999
bio_10
Mean Temperature of Warmest Quarter" ; units = "C*10" ; FillValue = -9999 ; missing_value = -9999
bio_11
Mean Temperature of Coldest Quarter" ; units = "C*10" ; FillValue = -9999 ; missing_value = -9999
bio_12
Annual Precipitation" ; units = "mm" ; FillValue = -9999 ; missing_value = -9999
bio_13
Precipitation of Wettest Period" ; units = "mm" ; FillValue = -9999 ; missing_value = -9999
bio_14
Precipitation of Driest Period" ; units = "mm" ; FillValue = -9999 ; missing_value = -9999
bio_15
Precipitation Seasonality (Coefficient of Variation)" ; units = "mm" ; FillValue = -9999 ; missing_value = -9999
bio_16
Precipitation of Wettest Quarter" ; units = "mm" ; FillValue = -9999 ; missing_value = -9999
bio_17
Precipitation of Driest Quarter" ; units = "mm" ; FillValue = -9999 ; missing_value = -9999
bio_18
Precipitation of Warmest Quarter" ; units = "mm" ; FillValue = -9999 ; missing_value = -9999
bio_19
Precipitation of Coldest Quarter" ; units = "mm" ; FillValue = -9999 ; missing_value = -9999 #'
pr_A_MO_pmip2_21k_oa_CCSM_eu_30s
downscaled GCM precipitation, CCSM, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/pr_A_MO_pmip2_21k_oa_CCSM_eu_30s
pr_A_MO_pmip2_21k_oa_CNRM_eu_30s
downscaled GCM precipitation, CNRM, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/pr_A_MO_pmip2_21k_oa_CNRM_eu_30s
pr_A_MO_pmip2_21k_oa_FGOALS_eu_30s
downscaled GCM precipitation, FGOALS, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/pr_A_MO_pmip2_21k_oa_FGOALS_eu_30s
pr_A_MO_pmip2_21k_oa_IPSL_eu_30s
downscaled GCM precipitation, IPSL, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/pr_A_MO_pmip2_21k_oa_IPSL_eu_30s
pr_A_MO_pmip2_21k_oa_MIROC3.2_eu_30s
downscaled GCM precipitation, MIROC3.2, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/pr_A_MO_pmip2_21k_oa_MIROC3.2_eu_30s
tas_A_MO_pmip2_21k_oa_CCSM_eu_30s
downscaled GCM average surface air temperature, CCSM, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tas_A_MO_pmip2_21k_oa_CCSM_eu_30s
tas_A_MO_pmip2_21k_oa_CNRM_eu_30s
downscaled GCM average surface air temperature, CNRM, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tas_A_MO_pmip2_21k_oa_CNRM_eu_30s
tas_A_MO_pmip2_21k_oa_FGOALS_eu_30s
downscaled GCM average surface air temperature, FGOALS, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tas_A_MO_pmip2_21k_oa_FGOALS_eu_30s
tas_A_MO_pmip2_21k_oa_IPSL_eu_30s
downscaled GCM average surface air temperature, IPSL, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tas_A_MO_pmip2_21k_oa_IPSL_eu_30s
tas_A_MO_pmip2_21k_oa_MIROC3.2_eu_30s
downscaled GCM average surface air temperature, MIROC3.2, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tas_A_MO_pmip2_21k_oa_MIROC3.2_eu_30s
tasmax_A_MO_pmip2_21k_oa_CCSM_eu_30s
downscaled GCM maximum surface air temperature, CCSM, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tasmax_A_MO_pmip2_21k_oa_CCSM_eu_30s
tasmax_A_MO_pmip2_21k_oa_CNRM_eu_30s
downscaled GCM maximum surface air temperature, CNRM, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tasmax_A_MO_pmip2_21k_oa_CNRM_eu_30s
tasmax_A_MO_pmip2_21k_oa_FGOALS_eu_30s
downscaled GCM maximum surface air temperature, FGOALS, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tasmax_A_MO_pmip2_21k_oa_FGOALS_eu_30s
tasmax_A_MO_pmip2_21k_oa_IPSL_eu_30s
downscaled GCM maximum surface air temperature, IPSL, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tasmax_A_MO_pmip2_21k_oa_IPSL_eu_30s
tasmax_A_MO_pmip2_21k_oa_MIROC3.2_eu_30s
downscaled GCM maximum surface air temperature, MIROC3.2, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tasmax_A_MO_pmip2_21k_oa_MIROC3.2_eu_30s
tasmin_A_MO_pmip2_21k_oa_CCSM_eu_30s
downscaled GCM minimum surface air temperature, CCSM, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tasmin_A_MO_pmip2_21k_oa_CCSM_eu_30s
tasmin_A_MO_pmip2_21k_oa_CNRM_eu_30s
downscaled GCM minimum surface air temperature, CNRM, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tasmin_A_MO_pmip2_21k_oa_CNRM_eu_30s
tasmin_A_MO_pmip2_21k_oa_FGOALS_eu_30s
downscaled GCM minimum surface air temperature, FGOALS, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tasmin_A_MO_pmip2_21k_oa_FGOALS_eu_30s
tasmin_A_MO_pmip2_21k_oa_IPSL_eu_30s
downscaled GCM minimum surface air temperature, IPSL, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tasmin_A_MO_pmip2_21k_oa_IPSL_eu_30s
tasmin_A_MO_pmip2_21k_oa_MIROC3.2_eu_30s
downscaled GCM minimum surface air temperature, MIROC3.2, LGM, 30x30sec , http://hs.pangaea.de/model/schmatz/tasmin_A_MO_pmip2_21k_oa_MIROC3.2_eu_30s
pre_*,tas_*,tasmax_*,tasmin_*
: startTime = 1
is equivalent to LGM average Januar endTime = 12
is equivalent to LGM average december
TT_Luterbacher_Xoplaki_1659-1998
reconstructed climate average surface air temperature, reconstructed+CRU, 1659-1998, 0.5x0.5 deg , http://hs.pangaea.de/model/schmatz/TT_Luterbacher_Xoplaki_1659-1998
#'
TT
: startTime = 1
is equivalent to the Januar 1659 endTime = 4080
is equvalent to December 1998
m<-getGeoData('schmatzPangea', item="tasmax_A_MO_pmip2_21k_oa_CCSM_eu_30s",startTime=1,endTime=3)
m<-getGeoData('schmatzPangea', item="bioclim_A_MO_pmip2_21k_oa_CCSM_eu_30s",data="bio_1")
TT<- getGeoData('schmaztLGMData', item='TT_Luterbacher_Xoplaki_1659-1998')
harrylist
is a list of world wide about 60.000 coordinates altitudes and names of summits PeakList
If name=
'harrylist' you will download and clean the complete list
getGeoData('harrylist')
OSMp
is the OSM Point Data from the current OSM database
If name
='OSMp' you must provide lat_min,lat_max,lon_min,lon_max for the boundig box. Additionally you must set the switch 'all' to FALSE
if you just want to download a specified item. Then you have to provide the content of the desired items in the 'key' and 'val' argument. According to this combination you have to provide a tag list containing the Tags of the element c('name','ele').
getGeoData('OSMp', extent=c(11.35547,11.40009,47.10114,47.13512), key='natural',val='peak',taglist=c('name','ele'))
tiroldem
refers to the 10 m Lidar based DEM as provided by the Authorithy of Tirol. For Copyright and further information see: DEM
If name
='tiroldem' you must set the switch 'all' to FALSE
if you just want to download a specified item you have to set data=item.
The list of allowd items is:
IBK_DGM10
Innsbruck,
IL_DGM10
Innsbruck Land,
IM_DGM10
Imst,
KB_DGM10
Kitzbuehl,
KU_DGM10
Kufstein,
LA_DGM10
Landeck,
RE_DGM10
Reutte,
SZ_DGM10
Schwaz,
LZ_DGM10
Lienz (Osttirol).
For use in ArcGIS the data is correctly georeferenced. However for R you MUST use the following proj4 strings if you want to project other data acccording to the Austrian Datum. DO NOT USE the default EPSG Code string! All datasets except Lienz are projected with: ”+proj=tmerc +lat_0=0 +lon_0=10.33333333333333 +k=1 +x_0=0 +y_0=-5000000 +ellps=bessel +towgs84=577.326, 90.129, 463.919, 5.137, 1.474, 5.297, 2.4232 +units=m'. Item=lz_10m (Lienz) has an different Central_Meridian. You have to change it to 13.333333.
getGeoData('tiroldem', item = 'KU_DGM10')
Robert J. Hijmans, Chris Reudenbach giswerk@gis-ma.org
http://www.worldclim.org
http://www.gadm.org
http://srtm.csi.cgiar.org/
http://diva-gis.org/gdata
http://www.tourenwelt.info
https://www.tirol.gv.at/data/datenkatalog/geographie-und-planung/digitales-gelaendemodell-tirol/
http://www.openstreetmap.org
http://doi.pangaea.de/10.1594/PANGAEA.845883
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | #### Examples getGeoData
## Not run:
## get SRTM data at a position
r<-getGeoData(name="SRTM",xtent = extent(11.,11.,50.,50.))
## get SRTM data for an area
r<-getGeoData(name="SRTM",xtent = extent(11.,17.,50.,56.))
## get SRTM data for an area with a buffer zone (e.g. for a cost or watershed analysis) zone is in degree
r<-getGeoData(name="SRTM",xtent = extent(11.,17.,50.,56.), zone = 3.0)
## get SRTM Tile names
t<-getGeoData(name="SRTM",xtent = extent(11.,17.,50.,56.), zone = 3.0, download = FALSE)
## get SRTM data for an area with a buffer and merge it
r<-getGeoData(name="SRTM",xtent = extent(11.,17.,50.,56.), zone = 3.0, merge = TRUE)
## get Schmatz et al. data please have a look at details
r<- getGeoData('schmatzPangea', item='tasmin_A_MO_pmip2_21k_oa_CNRM_eu_30s',endTime=12)
r<- getGeoData('schmatzPangea', item="bioclim_A_MO_pmip2_21k_oa_CCSM_eu_30s", layer="bio_1")
## get a single tile of the Tirolean DEM
r<- getGeoData('tiroldem', items='IBK_DGM10')
## get a single 3 tiles of the Tirolean DEM as a merged raster
r<- getGeoData('tiroldem', item=c('IBK_DGM10','IL_DGM10','IM_DGM10'), merge =TRUE)
# get arbitrary OSM point data
r<- getGeoData('OSMp', extent=c(11.35547,11.40009,47.10114,47.13512), key='natural',val='saddle',taglist=c('name','ele','direction'))
# get Harald Breitkreutz' summit list
r<- getGeoData('harrylist', extent=c(11.35547,11.40009,47.10114,47.13512))
### the following datasets are retrieved according to Hijmans \code{getData}
r<- getGeoData('worldclim', var='tmin', res=0.5, lon=5, lat=45)
r<- getGeoData('worldclim', var='bio', res=10)
r<- getGeoData('CMIP5', var='tmin', res=10, rcp=85, model='AC', year=70)
v<- getGeoData('alt', country='FRA', mask=TRUE)
v<- getGeoData('GADM', country='FRA', level=1)
t<- ccodes()
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.