#' @keywords internal
calc_test_stat_inv_gauss_mu <- function(x, mu, alternative) {
get_MLEs <- function(x) {
xbar <- mean(x)
xbar <- pmax(xbar, .Machine$double.eps)
harmonic <- 1 / mean(1 / x)
shape <- (1 / harmonic) - (1 / xbar)
shape <- 1 / shape
shape <- pmax(shape, .Machine$double.eps)
MLEs <- c(xbar, shape)
return(MLEs)
}
MLEs <- get_MLEs(x)
obs_mean <- MLEs[1]
obs_shape <- MLEs[2]
# Profile shape
get_profile_shape <- function(x, mu) {
C <- sum((x - mu)^2 / x)
C <- (1 / mu^2) * C
profile_shape <- length(x) / C
profile_shape <- pmax(profile_shape, .Machine$double.eps)
return(profile_shape)
}
profile_shape <- get_profile_shape(x, mu)
W <- 2 * (sum(statmod::dinvgauss(x = x, mean = obs_mean, shape = obs_shape, log = TRUE)) -
sum(statmod::dinvgauss(x = x, mean = mu, shape = profile_shape, log = TRUE)))
W <- pmax(W, 0)
if (alternative != "two.sided") {
W <- sign(obs_mean - mu) * W^.5
}
return(W)
}
#' Test the mean of an inverse gaussian distribution.
#'
#' @inheritParams gaussian_mu_one_sample
#' @inherit gaussian_mu_one_sample return
#' @inherit gaussian_mu_one_sample source
#' @examples
#' library(LRTesteR)
#' library(statmod)
#'
#' # Null is true
#' set.seed(1)
#' x <- rinvgauss(n = 100, mean = 1, shape = 2)
#' inverse_gaussian_mu_one_sample(x, 1, "two.sided")
#'
#' # Null is false
#' set.seed(1)
#' x <- rinvgauss(n = 100, mean = 3, shape = 2)
#' inverse_gaussian_mu_one_sample(x, 1, "greater")
#' @export
inverse_gaussian_mu_one_sample <- LRTesteR:::create_test_function_one_sample_case_one(LRTesteR:::calc_test_stat_inv_gauss_mu, mu, 35, 0)
#' @keywords internal
calc_test_inv_gauss_shape <- function(x, shape, alternative) {
get_MLEs <- function(x) {
xbar <- mean(x)
xbar <- pmax(xbar, .Machine$double.eps)
harmonic <- 1 / mean(1 / x)
shape <- (1 / harmonic) - (1 / xbar)
shape <- 1 / shape
shape <- pmax(shape, .Machine$double.eps)
MLEs <- c(xbar, shape)
return(MLEs)
}
MLEs <- get_MLEs(x)
obs_mean <- MLEs[1]
obs_shape <- MLEs[2]
profile_mean <- pmax(mean(x), .Machine$double.eps)
W <- 2 * (sum(statmod::dinvgauss(x = x, mean = obs_mean, shape = obs_shape, log = TRUE)) -
sum(statmod::dinvgauss(x = x, mean = profile_mean, shape = shape, log = TRUE)))
W <- pmax(W, 0)
if (alternative != "two.sided") {
W <- sign(obs_shape - shape) * W^.5
}
return(W)
}
#' Test the shape parameter of an inverse gaussian distribution.
#'
#' @inheritParams gaussian_mu_one_sample
#' @param shape a number indicating the tested value of the shape parameter.
#' @inherit gaussian_mu_one_sample return
#' @inherit gaussian_mu_one_sample source
#' @examples
#' library(LRTesteR)
#' library(statmod)
#'
#' # Null is true
#' set.seed(1)
#' x <- rinvgauss(n = 100, mean = 1, shape = 2)
#' inverse_gaussian_shape_one_sample(x, 2, "two.sided")
#'
#' # Null is false
#' set.seed(1)
#' x <- rinvgauss(n = 100, mean = 1, shape = 2)
#' inverse_gaussian_shape_one_sample(x, 1, "greater")
#' @export
inverse_gaussian_shape_one_sample <- LRTesteR:::create_test_function_one_sample_case_one(LRTesteR:::calc_test_inv_gauss_shape, shape, 35, 0)
#' @keywords internal
calc_test_inv_gauss_dispersion <- function(x, dispersion, alternative) {
get_MLEs <- function(x) {
xbar <- mean(x)
xbar <- pmax(xbar, .Machine$double.eps)
harmonic <- 1 / mean(1 / x)
shape <- (1 / harmonic) - (1 / xbar)
shape <- 1 / shape
shape <- pmax(shape, .Machine$double.eps)
MLEs <- c(xbar, shape)
return(MLEs)
}
MLEs <- get_MLEs(x)
obs_mean <- MLEs[1]
obs_shape <- MLEs[2]
obs_dispersion <- 1 / obs_shape
profile_mean <- pmax(mean(x), .Machine$double.eps)
W <- 2 * (sum(statmod::dinvgauss(x = x, mean = obs_mean, dispersion = obs_dispersion, log = TRUE)) -
sum(statmod::dinvgauss(x = x, mean = profile_mean, dispersion = dispersion, log = TRUE)))
W <- pmax(W, 0)
if (alternative != "two.sided") {
W <- sign(obs_dispersion - dispersion) * W^.5
}
return(W)
}
#' Test the dispersion parameter of an inverse gaussian distribution.
#'
#' @inheritParams gaussian_mu_one_sample
#' @param dispersion a number indicating the tested value of the dispersion parameter.
#' @inherit gaussian_mu_one_sample return
#' @inherit gaussian_mu_one_sample source
#' @examples
#' library(LRTesteR)
#' library(statmod)
#'
#' # Null is true
#' set.seed(1)
#' x <- rinvgauss(n = 100, mean = 1, dispersion = 2)
#' inverse_gaussian_dispersion_one_sample(x, 2, "two.sided")
#'
#' # Null is false
#' set.seed(1)
#' x <- rinvgauss(n = 100, mean = 1, dispersion = 2)
#' inverse_gaussian_dispersion_one_sample(x, 1, "greater")
#' @export
inverse_gaussian_dispersion_one_sample <- LRTesteR:::create_test_function_one_sample_case_one(LRTesteR:::calc_test_inv_gauss_dispersion, dispersion, 35, 0)
#' @keywords internal
calc_test_stat_inv_gauss_mu_one_way <- function(x, fctr) {
# null
get_MLEs <- function(x) {
xbar <- mean(x)
xbar <- pmax(xbar, .Machine$double.eps)
harmonic <- 1 / mean(1 / x)
shape <- (1 / harmonic) - (1 / xbar)
shape <- 1 / shape
shape <- pmax(shape, .Machine$double.eps)
MLEs <- c(xbar, shape)
return(MLEs)
}
MLEs <- get_MLEs(x)
obs_mean <- MLEs[1]
obs_shape <- MLEs[2]
rm(MLEs)
W1 <- sum(statmod::dinvgauss(x = x, mean = obs_mean, shape = obs_shape, log = TRUE))
# alt
get_group_MLEs <- function(x, fctr) {
deno <- 0
means <- vector(mode = "numeric", length = length(levels(fctr)))
for (i in seq_along(levels(fctr))) {
tempX <- x[which(fctr == levels(fctr)[i])]
harmonic <- length(tempX) / sum(1 / tempX)
means[i] <- mean(tempX)
C <- length(tempX) * (1 / harmonic - 1 / means[i])
deno <- deno + C
}
profile_shape <- length(x) / deno
group_MLEs <- c(profile_shape, means)
group_MLEs <- pmax(group_MLEs, .Machine$double.eps)
return(group_MLEs)
}
group_MLEs <- get_group_MLEs(x, fctr)
profile_shape_HA <- group_MLEs[1]
group_means <- group_MLEs[2:length(group_MLEs)]
rm(group_MLEs)
likelihoods <- vector(mode = "numeric", length = length(levels(fctr)))
for (i in seq_along(levels(fctr))) {
l <- levels(fctr)[i]
index <- which(fctr == l)
tempX <- x[index]
likelihoods[i] <- sum(statmod::dinvgauss(x = tempX, mean = group_means[i], shape = profile_shape_HA, log = TRUE))
}
W2 <- sum(likelihoods)
W <- 2 * (W2 - W1)
W <- pmax(W, 0)
return(W)
}
#' Test the equality of means of inverse gaussian distributions.
#'
#' @inheritParams gaussian_mu_one_way
#' @inherit gaussian_mu_one_way return
#' @inherit gaussian_mu_one_way source
#' @inherit gaussian_mu_one_way details
#' @examples
#' library(LRTesteR)
#' library(statmod)
#'
#' # Null is true
#' set.seed(1)
#' x <- rinvgauss(n = 150, mean = 1, shape = 2)
#' fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
#' fctr <- factor(fctr, levels = c("1", "2", "3"))
#' inverse_gaussian_mu_one_way(x, fctr, .95)
#'
#' # Null is false
#' set.seed(1)
#' x <- c(
#' rinvgauss(n = 50, mean = 1, shape = 2),
#' rinvgauss(n = 50, mean = 2, shape = 2),
#' rinvgauss(n = 50, mean = 3, shape = 2)
#' )
#' fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
#' fctr <- factor(fctr, levels = c("1", "2", "3"))
#' inverse_gaussian_mu_one_way(x, fctr, .95)
#' @export
inverse_gaussian_mu_one_way <- create_test_function_one_way_case_one(LRTesteR:::calc_test_stat_inv_gauss_mu_one_way, inverse_gaussian_mu_one_sample, 70)
#' @keywords internal
calc_test_stat_inv_gauss_shape_one_way <- function(x, fctr) {
# null
get_MLEs <- function(x) {
xbar <- mean(x)
xbar <- pmax(xbar, .Machine$double.eps)
harmonic <- 1 / mean(1 / x)
shape <- (1 / harmonic) - (1 / xbar)
shape <- 1 / shape
shape <- pmax(shape, .Machine$double.eps)
MLEs <- c(xbar, shape)
return(MLEs)
}
MLEs <- get_MLEs(x)
obs_mean <- MLEs[1]
obs_shape <- MLEs[2]
rm(MLEs)
W1 <- sum(statmod::dinvgauss(x = x, mean = obs_mean, shape = obs_shape, log = TRUE))
# alt
get_group_MLEs <- function(x, fctr) {
xbar <- mean(x)
shapes <- vector(mode = "numeric", length = length(levels(fctr)))
for (i in seq_along(levels(fctr))) {
tempX <- x[which(fctr == levels(fctr)[i])]
C <- sum((tempX - xbar)^2 / tempX)
shapes[i] <- length(tempX) * (xbar^2) / C
}
group_MLEs <- c(xbar, shapes)
group_MLEs <- pmax(group_MLEs, .Machine$double.eps)
return(group_MLEs)
}
group_MLEs <- get_group_MLEs(x, fctr)
profile_mean_HA <- group_MLEs[1]
group_shapes <- group_MLEs[2:length(group_MLEs)]
rm(group_MLEs)
likelihoods <- vector(mode = "numeric", length = length(levels(fctr)))
for (i in seq_along(levels(fctr))) {
l <- levels(fctr)[i]
index <- which(fctr == l)
tempX <- x[index]
likelihoods[i] <- sum(statmod::dinvgauss(x = tempX, mean = profile_mean_HA, shape = group_shapes[i], log = TRUE))
}
W2 <- sum(likelihoods)
W <- 2 * (W2 - W1)
W <- pmax(W, 0)
return(W)
}
#' Test the equality of shape parameters of inverse gaussian distributions.
#'
#' @inheritParams gaussian_mu_one_way
#' @inherit gaussian_mu_one_way return
#' @inherit gaussian_mu_one_way source
#' @details
#' \itemize{
#' \item Null: Null: All shapes are equal. (shape_1 = shape_2 ... shape_k).
#' \item Alternative: At least one shape is not equal.
#' }
#' @examples
#' library(LRTesteR)
#' library(statmod)
#'
#' # Null is true
#' set.seed(1)
#' x <- rinvgauss(n = 150, mean = 1, shape = 2)
#' fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
#' fctr <- factor(fctr, levels = c("1", "2", "3"))
#' inverse_gaussian_shape_one_way(x, fctr, .95)
#'
#' # Null is false
#' set.seed(1)
#' x <- c(
#' rinvgauss(n = 50, mean = 1, shape = 1),
#' rinvgauss(n = 50, mean = 1, shape = 3),
#' rinvgauss(n = 50, mean = 1, shape = 4)
#' )
#' fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
#' fctr <- factor(fctr, levels = c("1", "2", "3"))
#' inverse_gaussian_shape_one_way(x, fctr, .95)
#' @export
inverse_gaussian_shape_one_way <- create_test_function_one_way_case_one(LRTesteR:::calc_test_stat_inv_gauss_shape_one_way, inverse_gaussian_shape_one_sample, 70)
#' @keywords internal
calc_test_stat_inv_gauss_dispersion_one_way <- function(x, fctr) {
# null
get_MLEs <- function(x) {
xbar <- mean(x)
xbar <- pmax(xbar, .Machine$double.eps)
harmonic <- 1 / mean(1 / x)
shape <- (1 / harmonic) - (1 / xbar)
shape <- 1 / shape
shape <- pmax(shape, .Machine$double.eps)
MLEs <- c(xbar, shape)
return(MLEs)
}
MLEs <- get_MLEs(x)
obs_mean <- MLEs[1]
obs_shape <- MLEs[2]
obs_dispersion <- 1 / obs_shape
rm(MLEs)
W1 <- sum(statmod::dinvgauss(x = x, mean = obs_mean, dispersion = obs_dispersion, log = TRUE))
# alt
get_group_MLEs <- function(x, fctr) {
xbar <- mean(x)
shapes <- vector(mode = "numeric", length = length(levels(fctr)))
for (i in seq_along(levels(fctr))) {
tempX <- x[which(fctr == levels(fctr)[i])]
C <- sum((tempX - xbar)^2 / tempX)
shapes[i] <- length(tempX) * (xbar^2) / C
}
group_MLEs <- c(xbar, shapes)
group_MLEs <- pmax(group_MLEs, .Machine$double.eps)
return(group_MLEs)
}
group_MLEs <- get_group_MLEs(x, fctr)
profile_mean_HA <- group_MLEs[1]
group_shapes <- group_MLEs[2:length(group_MLEs)]
group_dispersions <- 1 / group_shapes
rm(group_MLEs)
likelihoods <- vector(mode = "numeric", length = length(levels(fctr)))
for (i in seq_along(levels(fctr))) {
l <- levels(fctr)[i]
index <- which(fctr == l)
tempX <- x[index]
likelihoods[i] <- sum(statmod::dinvgauss(x = tempX, mean = profile_mean_HA, dispersion = group_dispersions[i], log = TRUE))
}
W2 <- sum(likelihoods)
W <- 2 * (W2 - W1)
W <- pmax(W, 0)
return(W)
}
#' Test the equality of dispersion parameters of inverse gaussian distributions.
#'
#' @inheritParams gaussian_mu_one_way
#' @inherit gaussian_mu_one_way return
#' @inherit gaussian_mu_one_way source
#' @details
#' \itemize{
#' \item Null: Null: All dispersion parameters are equal. (dispersion_1 = dispersion_2 ... dispersion_k).
#' \item Alternative: At least one dispersion is not equal.
#' }
#' @examples
#' library(LRTesteR)
#' library(statmod)
#'
#' # Null is true
#' set.seed(1)
#' x <- rinvgauss(n = 150, mean = 1, dispersion = 2)
#' fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
#' fctr <- factor(fctr, levels = c("1", "2", "3"))
#' inverse_gaussian_dispersion_one_way(x, fctr, .95)
#'
#' # Null is false
#' set.seed(1)
#' x <- c(
#' rinvgauss(n = 50, mean = 1, dispersion = 1),
#' rinvgauss(n = 50, mean = 1, dispersion = 3),
#' rinvgauss(n = 50, mean = 1, dispersion = 4)
#' )
#' fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
#' fctr <- factor(fctr, levels = c("1", "2", "3"))
#' inverse_gaussian_dispersion_one_way(x, fctr, .95)
#' @export
inverse_gaussian_dispersion_one_way <- create_test_function_one_way_case_one(LRTesteR:::calc_test_stat_inv_gauss_dispersion_one_way, inverse_gaussian_dispersion_one_sample, 70)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.