#' @title Simulate data for a Neural Network Structure.
#' @param rows An integer scaler. The number of rows in simulated data.
#' @param N An integer scaler. The number of normal random variables in X.
#' @param U An integer scaler. The number of uniform random variables in X.
#' @param C An integer scaler. The number of binary random variables in X.
#' @param matrices A list. Each element is a matrix defining the structure the layer.
#' @param activations A list. Each element is a activation function.
#' @param noise A positive numeric scaler.
#' The standard deviation of a normal random variable added to response.
#' 0 is no noise.
#' @return A matrix containing predictor variables and a response variable.
#' @examples
#' library(NeuralNetworkSimulatoR)
#'
#' # Network with no hidden layers.
#' # Linear regression with weights 1, 2, and 3
#' M <- list(matrix(1:3, nrow = 3, ncol = 1))
#' A <- list(linear_R)
#' simData <- simulate_regression_data(
#' rows = 1000L,
#' N = 3L, U = 0L, C = 0L,
#' matrices = M, activations = A,
#' noise = 0
#' )
#' rm(A, M, simData)
#'
#' # Network with 1 hidden layer.
#' # 10 nodes in first layer. Activation relu
#' # 5 nodes in second layer. Activation elu_R (hidden layer)
#' M <- list(
#' matrix(1:10, nrow = 10, ncol = 5),
#' matrix(1:5, nrow = 5, ncol = 1)
#' )
#' A <- list(relu_R, elu_R)
#' simData <- simulate_regression_data(
#' rows = 1000L,
#' N = 5L, U = 5L, C = 0L,
#' matrices = M, activations = A,
#' noise = 0
#' )
#' rm(A, M, simData)
#'
#' # Network with 2 hidden layers.
#' # 10 nodes in first layer. Activation relu
#' # 5 nodes in second layer. Activation linear_R (hidden layer)
#' # 3 nodes in third layer. Activation relu_R (hidden layer)
#' M <- list(
#' matrix(1:10, nrow = 10, ncol = 5),
#' matrix(1:5, nrow = 5, ncol = 3),
#' matrix(1:3, nrow = 3, ncol = 1)
#' )
#' A <- list(relu_R, linear_R, relu_R)
#' simData <- simulate_regression_data(
#' rows = 1000L,
#' N = 5L, U = 5L, C = 0L,
#' matrices = M, activations = A,
#' noise = 0
#' )
#'
#' rm(A, M, simData)
#' @export
simulate_regression_data <- function(rows = 1000L, N = 5L, U = 5L, C = 0L, matrices, activations, noise = 0) {
#################
# Check inputs
#################
if (length(rows) != 1) {
stop("Argument rows should have length one.")
}
if (!is.integer(rows)) {
stop("Argument rows should be an integer.")
}
if (rows < 0) {
stop("Argument rows nonnegative.")
}
# Variable inputs
if (length(N) != 1) {
stop("Argument N should have length one.")
}
if (!is.integer(N)) {
stop("Argument N should be an integer.")
}
if (N < 0) {
stop("Argument N nonnegative.")
}
if (length(U) != 1) {
stop("Argument U should have length one.")
}
if (!is.integer(U)) {
stop("Argument U should be an integer.")
}
if (U < 0) {
stop("Argument U nonnegative.")
}
if (length(C) != 1) {
stop("Argument C should have length one.")
}
if (!is.integer(C)) {
stop("Argument C should be an integer.")
}
if (C < 0) {
stop("Argument C nonnegative.")
}
if (length(matrices) != length(activations)) {
stop("Arguments matrices and activations should have the same length.")
}
if (length(matrices) < 1) {
stop("Arguments matrices should have positive length.")
}
# Confrim matrices dimentions are correct.
if (nrow(matrices[[1]]) != N + U + C) {
stop("The number of rows in the first elemet of argument matrices did not equal N + U + C.")
}
if (length(matrices) > 1) {
for (i in 2:length(matrices)) {
tempCol <- dim(matrices[[i - 1]])[2]
tempRow <- dim(matrices[[i]])[1]
if (tempCol != tempRow) {
stop(paste("Invalid dimensions between elements", i - 1, "and", i, "of argument matrices."))
}
}
}
if (ncol(matrices[[length(matrices)]]) != 1) {
stop("The last matrix must have one column. Multiheaded networks not supported.")
}
# noise
if (length(noise) != 1) {
stop("Argument noise should have length one.")
}
if (!is.numeric(noise)) {
stop("Argument noise should be an numeric.")
}
if (noise < 0) {
stop("Argument noise nonnegative.")
}
#################
# Make input data
#################
if (N > 0) {
norms <- matrix(stats::rnorm(rows * N), nrow = rows, ncol = N)
colnames(norms) <- stringr::str_c(rep("N", N), 1:N)
} else {
norms <- matrix(0, nrow = rows, ncol = 0)
}
if (U > 0) {
uniforms <- matrix(stats::runif(rows * U), nrow = rows, ncol = U)
colnames(uniforms) <- stringr::str_c(rep("U", U), 1:U)
} else {
uniforms <- matrix(0, nrow = rows, ncol = 0)
}
if (C > 0) {
Cs <- matrix(ifelse(stats::runif(rows * C) > .5, 1, 0),
nrow = rows, ncol = C
)
colnames(Cs) <- stringr::str_c(rep("C", C), 1:C)
} else {
Cs <- matrix(0, nrow = rows, ncol = 0)
}
IN <- cbind(norms, uniforms, Cs)
#################
# Make response variable
#################
OUT <- IN
for (i in 1:length(matrices)) {
OUT <- OUT %*% matrices[[i]]
OUT <- activations[[i]](OUT)
}
OUT <- OUT + stats::rnorm(nrow(OUT), 0, noise)
colnames(OUT) <- "Response"
OUT2 <- cbind(IN, OUT)
colnames(OUT2) <- c(colnames(IN), colnames(OUT))
return(OUT2)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.