Description Usage Arguments Details Author(s) See Also Examples
This slot stores the confusion matrix for the trained model using classify
function.
1 2 3 4 | confusionMat(object)
## S4 method for signature 'MLSeq'
confusionMat(object)
|
object |
an |
confusionMat
slot includes information about cross-tabulation of observed and predicted classes
and corresponding statistics such as accuracy rate, sensitivity, specifity, etc. The returned object
is in confusionMatrix
class of caret package. See confusionMatrix
for details.
Gokmen Zararsiz
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | library(DESeq2)
data(cervical)
# a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]
# defining sample classes.
class <- data.frame(condition=factor(rep(c("N", "T"), c(29, 29))))
n <- ncol(data) # number of samples
p <- nrow(data) # number of features
# number of samples for test set (20% test, 80% train).
nTest <- ceiling(n*0.2)
ind <- sample(n, nTest, FALSE)
# train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition=class[-ind, ])
# train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,
colData = classtr, formula(~ condition))
data.trainS4 <- DESeq(data.trainS4, fitType = "local")
# Classification and Regression Trees (CART)
cart <- classify(data = data.trainS4, method = "cart",
transformation = "vst", ref = "T", normalize = "deseq",
control = trainControl(method = "repeatedcv", number = 5,
repeats = 3, classProbs = TRUE))
confusionMat(cart)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.