Description Usage Arguments Details Value Author(s) References See Also Examples
This function predicts the class labels of test data for a given model.
1 | predictClassify(model, test.data, ...)
|
model |
a model of |
test.data |
a |
... |
further arguments to be passed to or from methods. These arguements are used in
|
predictClassify
function returns the predicted class information along with trained model.
Predicted values are given either as class labels or estimated probabilities of each class for
each sample. If type = "raw"
, as can be seen in the example below, the predictions are
extracted as raw class labels.In order to extract estimated class probabilities, one should follow the steps below:
set classProbs = TRUE
within control
arguement in classify
set type = "prob"
within predictClassify
MLSeqObject
an MLSeq object returned from classify
. See details.
Predictions
a data frame or vector including either the predicted class
probabilities or class labels of given test data.
Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk
Kuhn M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, (http://www.jstatsoft.org/v28/i05/)
Anders S. Huber W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11:R106
Witten DM. (2011). Classification and clustering of sequencing data using a poisson model. The Annals of Applied Statistics, 5(4), 2493:2518
Charity WL. et al. (2014) Voom: precision weights unlock linear model analysis tools for RNA-Seq read counts, Genome Biology, 15:R29, doi:10.1186/gb-2014-15-2-r29
Witten D. et al. (2010) Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biology, 8:58
Robinson MD, Oshlack A (2010). A scaling normalization method for differential expression analysis of RNA-Seq data. Genome Biology, 11:R25, doi:10.1186/gb-2010-11-3-r25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | library(DESeq2)
data(cervical)
# a subset of cervical data with first 150 features.
data <- cervical[c(1:150), ]
# defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))
n <- ncol(data) # number of samples
p <- nrow(data) # number of features
# number of samples for test set (20% test, 80% train).
nTest <- ceiling(n*0.2)
ind <- sample(n, nTest, FALSE)
# train set
data.train <- data[ ,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind, ])
# train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,
colData = classtr, formula(~ condition))
data.trainS4 <- DESeq(data.trainS4, fitType = "local")
# test set
data.test <- data[ ,ind]
data.test <- as.matrix(data.test + 1)
classts <- data.frame(condition=class[ind, ])
# test set in S4
data.testS4 <- DESeqDataSetFromMatrix(countData = data.test,
colData = classts, formula(~ condition))
data.testS4 <- DESeq(data.testS4, fitType = "local")
## Number of repeats (repeats) might change model accuracies ##
# Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "cart",
transformation = "vst", ref = "T", normalize = "deseq",
control = trainControl(method = "repeatedcv", number = 5,
repeats = 3, classProbs = TRUE))
cart
# Random Forest (RF) Classification
rf <- classify(data = data.trainS4, method = "randomforest",
transformation = "vst", ref = "T", normalize = "deseq",
control = trainControl(method = "repeatedcv", number = 5,
repeats = 3, classProbs = TRUE))
rf
# predicted classes of test samples for CART method (class probabilities)
pred.cart = predictClassify(cart, data.testS4, type = "prob")
pred.cart
# predicted classes of test samples for RF method (class labels)
pred.rf = predictClassify(rf, data.testS4, type = "raw")
pred.rf
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.