Description Usage Arguments Author(s) See Also Examples
This slot stores the trained model. This object is returned from train.default
function in caret package.
Any further request using caret functions is available for trainedModel
since this object is in the
same class as the returned object from train.default
. See train.default
for details.
1 2 3 4 |
object |
an |
Gokmen Zararsiz
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | library(DESeq2)
data(cervical)
# a subset of cervical data with first 150 features.
data <- cervical[c(1:150),]
# defining sample classes.
class <- data.frame(condition=factor(rep(c("N", "T"), c(29, 29))))
n <- ncol(data) # number of samples
p <- nrow(data) # number of features
# number of samples for test set (20% test, 80% train).
nTest <- ceiling(n*0.2)
ind <- sample(n, nTest, FALSE)
# train set
data.train <- data[,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition=class[-ind, ])
# train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,
colData = classtr, formula(~ condition))
data.trainS4 <- DESeq(data.trainS4, fitType = "local")
# Classification and Regression Trees (CART)
cart <- classify(data = data.trainS4, method = "cart",
transformation = "vst", ref = "T", normalize = "deseq",
control = trainControl(method = "repeatedcv", number = 5,
repeats = 3, classProbs = TRUE))
trained(cart)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.