##' Prepare DASS21
##'
##' Template for the functions to prepare specific tasks. Most of this file should not be changed
##' Things to change:
##' - Name of function: prepare_DASS21 -> prepare_[value of short_name_scale_str]
##' - dimensions parameter in standardized_names()
##' - 2 [ADAPT] chunks
##'
##' @title prepare_DASS21
##'
##' @param short_name_scale_str
##' @param DF_clean
##'
##' @return
##' @author gorkang
##' @export
prepare_DASS21 <- function(DF_clean, short_name_scale_str, output_formats) {
# DEBUG
# targets::tar_load_globals()
# jsPsychHelpeR::debug_function(prepare_DASS21)
# [ADAPT]: Items to ignore and reverse ---------------------------------------
# ****************************************************************************
items_to_ignore = c("000") # Ignore these items: If nothing to ignore, keep items_to_ignore = c("00")
items_to_reverse = c("000") # Reverse these items: If nothing to reverse, keep items_to_reverse = c("00")
items_dimensions = list(
depresion = c("003", "005", "010", "013", "016", "017", "021"),
ansiedad = c("002", "004", "007", "009", "015", "019", "020"),
estres = c("001", "006", "008", "011", "012", "014", "018")
)
# [END ADAPT]: ***************************************************************
# ****************************************************************************
# Standardized names ------------------------------------------------------
names_list = standardized_names(short_name_scale = short_name_scale_str,
dimensions = names(items_dimensions),
help_names = FALSE) # [KEEP as FALSE]
# Create long -------------------------------------------------------------
DF_long_RAW = create_raw_long(DF_clean,
short_name_scale = short_name_scale_str,
numeric_responses = FALSE, # [TRUE or FALSE]
is_experiment = FALSE,
keep_time = FALSE, # Keep time stamp for each response
help_prepare = FALSE) # Show n of items, responses,... [CHANGE to TRUE to debug]
# Create long DIR ------------------------------------------------------------
DF_long_DIR =
DF_long_RAW |>
dplyr::select(id, trialid, RAW) |>
# [ADAPT]: RAW to DIR for individual items -----------------------------------
# ****************************************************************************
# Transformations
dplyr::mutate(
DIR =
dplyr::case_when(
RAW %in% c("0 No me aplicó", "0 (No me aplicó)", "No me ha ocurrido") ~ 0,
RAW %in% c("1 Me aplicó un poco, o durante parte del tiempo", "Me ha ocurrido un poco, o durante parte del tiempo") ~ 1,
RAW %in% c("2 Me aplicó bastante, o durante una buena parte del tiempo", "Me ha ocurrido bastante, o durante una buena parte del tiempo") ~ 2,
RAW %in% c("3 Me aplicó mucho, o la mayor parte del tiempo", "Me ha ocurrido mucho, o la mayor parte del tiempo") ~ 3,
is.na(RAW) ~ NA_real_,
trialid %in% paste0(short_name_scale_str, "_", items_to_ignore) ~ NA_real_, # OR NA_character_
TRUE ~ 9999
)
) |>
# Invert items
dplyr::mutate(
DIR =
dplyr::case_when(
DIR == 9999 ~ DIR, # To keep the missing values unchanged
trialid %in% paste0(short_name_scale_str, "_", items_to_reverse) ~ (6 - DIR),
TRUE ~ DIR
)
)
# [END ADAPT]: ***************************************************************
# ****************************************************************************
# Create DF_wide_RAW_DIR -----------------------------------------------------
DF_wide_RAW =
DF_long_DIR |>
tidyr::pivot_wider(
names_from = trialid,
values_from = c(RAW, DIR),
names_glue = "{trialid}_{.value}") |>
# NAs for RAW and DIR items
dplyr::mutate(!!names_list$name_RAW_NA := rowSums(is.na(across((-matches(paste0(short_name_scale_str, "_", items_to_ignore, "_RAW")) & matches("_RAW$"))))),
!!names_list$name_DIR_NA := rowSums(is.na(across((-matches(paste0(short_name_scale_str, "_", items_to_ignore, "_DIR")) & matches("_DIR$"))))))
# [ADAPT]: Scales and dimensions calculations --------------------------------
# ****************************************************************************
# [USE STANDARD NAMES FOR Scales and dimensions: name_DIRt, name_DIRd1, etc.] Check with: standardized_names(help_names = TRUE)
DF_wide_RAW_DIR =
DF_wide_RAW |>
dplyr::mutate(
# Multiplied by 2 to make the scores equivalent to the complete DASS scale. See DASS21_en-AU.pdf Note 3 in Table 3.
!!names_list$name_DIRd[1] := rowSums(across(all_of(paste0(short_name_scale_str, "_", items_dimensions[[1]], "_DIR"))), na.rm = TRUE) * 2,
!!names_list$name_DIRd[2] := rowSums(across(all_of(paste0(short_name_scale_str, "_", items_dimensions[[2]], "_DIR"))), na.rm = TRUE) * 2,
!!names_list$name_DIRd[3] := rowSums(across(all_of(paste0(short_name_scale_str, "_", items_dimensions[[3]], "_DIR"))), na.rm = TRUE) * 2
)
# [END ADAPT]: ***************************************************************
# ****************************************************************************
# CHECK NAs -------------------------------------------------------------------
check_NAs(DF_wide_RAW_DIR)
# Save files --------------------------------------------------------------
save_files(DF_wide_RAW_DIR, short_name_scale = short_name_scale_str, is_scale = TRUE, output_formats = output_formats)
# Output of function ---------------------------------------------------------
return(DF_wide_RAW_DIR)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.