##' Prepare DES
##'
##' Template for the functions to prepare specific tasks. Most of this file should not be changed
##' Things to change:
##' - Name of function: prepare_DES -> prepare_[value of short_name_scale_str]
##' - dimensions parameter in standardized_names()
##' - 2 [ADAPT] chunks
##'
##' @title prepare_DES
##'
##' @param short_name_scale_str
##' @param DF_clean
##'
##' @return
##' @author gorkang
##' @export
prepare_DES <- function(DF_clean, short_name_scale_str, output_formats) {
# DEBUG
# targets::tar_load_globals()
# jsPsychHelpeR::debug_function(prepare_DES)
# [ADAPT 1/3]: Items to ignore and reverse, dimensions -----------------------
# ****************************************************************************
description_task = "" # Brief description here
items_to_ignore = c("000") # Ignore these items: If nothing to ignore, keep as is
items_to_reverse = c("000") # Reverse these items: If nothing to reverse, keep as is
## NameDimension1, NameDimension2 should be the names of the dimensions
## Inside each c() create a vector of the item numbers for the dimension
## Add lines as needed. If there are no dimensions, keep as is
items_dimensions = list(
Ensimismamiento = c("002", "014", "015", "017", "018", "019", "020", "021", "022", "023", "024"),
EstadosDisociativos = c("003", "004", "005", "006", "008", "010", "025", "026"),
Despersonalizacion = c("001", "007", "011", "012", "013", "016", "027", "028"),
DesT = c("003", "005", "007", "008", "012", "013", "022")
)
# [END ADAPT 1/3]: ***********************************************************
# ****************************************************************************
# Standardized names ------------------------------------------------------
names_list = standardized_names(short_name_scale = short_name_scale_str,
dimensions = names(items_dimensions),
help_names = FALSE) # [KEEP as FALSE]
# Create long -------------------------------------------------------------
DF_long_RAW = create_raw_long(DF_clean,
short_name_scale = short_name_scale_str,
numeric_responses = TRUE, # [TRUE or FALSE]
is_experiment = FALSE,
keep_time = FALSE, # Keep time stamp for each response
help_prepare = FALSE) # Show n of items, responses,... [CHANGE to TRUE to debug]
# Create long DIR ------------------------------------------------------------
DF_long_DIR =
DF_long_RAW |>
# If using keep_time = TRUE above, use this and add timestamp to the select() call
# dplyr::mutate(timestamp = as.POSIXlt(datetime, format = "%Y-%m-%dT%H%M%S")) |>
dplyr::select(id, trialid, RAW) |>
# [ADAPT 2/3]: RAW to DIR for individual items -------------------------------
# ****************************************************************************
# Transformations
dplyr::mutate(
DIR =
dplyr::case_when(
is.numeric(RAW) ~ RAW,
is.na(RAW) ~ NA_real_, # OR NA_character_,
trialid %in% paste0(short_name_scale_str, "_", items_to_ignore) ~ NA_real_, # OR NA_character_,
TRUE ~ 9999 # OR "9999"
)
) |>
# Invert items [CAN BE DELETED IF NOT USED or DIR is non-numeric]
dplyr::mutate(
DIR =
dplyr::case_when(
DIR == 9999 ~ DIR, # To keep the missing values unchanged
trialid %in% paste0(short_name_scale_str, "_", items_to_reverse) ~ (6 - DIR), # REVIEW and replace 6 by MAX + 1
TRUE ~ DIR
)
)
# [END ADAPT 2/3]: ***********************************************************
# ****************************************************************************
# Create DF_wide_RAW_DIR -----------------------------------------------------
DF_wide_RAW =
DF_long_DIR |>
tidyr::pivot_wider(
names_from = trialid,
values_from = c(RAW, DIR),
names_glue = "{trialid}_{.value}") |>
# NAs for RAW and DIR items
dplyr::mutate(!!names_list$name_RAW_NA := rowSums(is.na(across((-matches(paste0(short_name_scale_str, "_", items_to_ignore, "_RAW")) & matches("_RAW$"))))),
!!names_list$name_DIR_NA := rowSums(is.na(across((-matches(paste0(short_name_scale_str, "_", items_to_ignore, "_DIR")) & matches("_DIR$"))))))
# [ADAPT 3/3]: Scales and dimensions calculations ----------------------------
# ****************************************************************************
# Reliability -------------------------------------------------------------
# REL1 = auto_reliability(DF_wide_RAW, short_name_scale = short_name_scale_str, items = items_dimensions[[1]])
# items_RELd1 = REL1$item_selection_string
# [USE STANDARD NAMES FOR Scales and dimensions: names_list$name_DIRd[1], names_list$name_DIRt,...]
# CHECK with: create_formulas(type = "dimensions_DIR", functions = "sum", names(items_dimensions))
DF_wide_RAW_DIR =
DF_wide_RAW |>
dplyr::mutate(
# [CHECK] Using correct formula? rowMeans() / rowSums()
# Score Dimensions (see standardized_names(help_names = TRUE) for instructions)
!!names_list$name_DIRd[1] := rowMeans(across(all_of(paste0(short_name_scale_str, "_", items_dimensions[[1]], "_DIR"))), na.rm = TRUE),
!!names_list$name_DIRd[2] := rowMeans(across(all_of(paste0(short_name_scale_str, "_", items_dimensions[[2]], "_DIR"))), na.rm = TRUE),
!!names_list$name_DIRd[3] := rowMeans(across(all_of(paste0(short_name_scale_str, "_", items_dimensions[[3]], "_DIR"))), na.rm = TRUE),
!!names_list$name_DIRd[4] := rowMeans(across(all_of(paste0(short_name_scale_str, "_", items_dimensions[[4]], "_DIR"))), na.rm = TRUE),
# Score Scale
!!names_list$name_DIRt := rowSums(across(all_of(matches("_DIR$"))), na.rm = TRUE)
)
# [END ADAPT 3/3]: ***********************************************************
# ****************************************************************************
# CHECK NAs -------------------------------------------------------------------
check_NAs(DF_wide_RAW_DIR)
# Save files --------------------------------------------------------------
save_files(DF_wide_RAW_DIR, short_name_scale = short_name_scale_str, is_scale = TRUE, output_formats = output_formats)
# Output of function ---------------------------------------------------------
return(DF_wide_RAW_DIR)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.