##' Prepare STAI
##'
##' Template for the functions to prepare specific tasks. Most of this file should not be changed
##' Things to change:
##' - Name of function: prepare_STAI -> prepare_[value of short_name_scale_str]
##' - dimensions parameter in standardized_names()
##' - 2 [ADAPT] chunks
##'
##' @title prepare_STAI
##'
##' @param short_name_scale_str
##' @param DF_clean
##'
##' @return
##' @author gorkang
##' @export
prepare_STAI <- function(DF_clean, short_name_scale_str, output_formats) {
# DEBUG
# targets::tar_load_globals()
# jsPsychHelpeR::debug_function(prepare_STAI)
# [ADAPT]: Items to ignore and reverse ---------------------------------------
# ****************************************************************************
items_to_ignore = c("00") # Ignore these items: If nothing to ignore, keep items_to_ignore = c("00")
items_to_reverse = c("01", "02", "05", "08", "10", "11", "15", "16", "19", "20", "21", "23", "26", "27", "30", "33", "34", "36", "39") # Reverse these items: If nothing to reverse, keep items_to_reverse = c("00")
items_dimensions = list(
estado = c("01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20"),
rasgo = c("21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40")
)
# [END ADAPT]: ***************************************************************
# ****************************************************************************
# Standardized names ------------------------------------------------------
names_list = standardized_names(short_name_scale = short_name_scale_str,
dimensions = names(items_dimensions), # Use names of dimensions, "" or comment out line
help_names = FALSE) # help_names = FALSE once the script is ready
# Create long -------------------------------------------------------------
DF_long_RAW = create_raw_long(DF_clean, short_name_scale = short_name_scale_str, numeric_responses = FALSE, is_experiment = FALSE, help_prepare = FALSE)
# Create long DIR ------------------------------------------------------------
DF_long_DIR =
DF_long_RAW |>
dplyr::select(id, trialid, RAW) |>
# [ADAPT]: RAW to DIR for individual items -----------------------------------
# ****************************************************************************
# Transformations
dplyr::mutate(
DIR =
dplyr::case_when(
RAW == "NADA" ~ 1,
RAW == "UN POCO" ~ 2,
RAW == "BASTANTE" ~ 3,
RAW == "MUCHO" ~ 4,
is.na(RAW) ~ NA_real_,
trialid %in% paste0(short_name_scale_str, "_", items_to_ignore) ~ NA_real_, # OR NA_character_
TRUE ~ 9999
)
) |>
# Invert items
dplyr::mutate(
DIR =
dplyr::case_when(
DIR == 9999 ~ DIR, # To keep the missing values unchanged
trialid %in% paste0(short_name_scale_str, "_", items_to_reverse) ~ (5 - DIR),
TRUE ~ DIR
)
)
# [END ADAPT]: ***************************************************************
# ****************************************************************************
# Create DF_wide_RAW_DIR -----------------------------------------------------
DF_wide_RAW =
DF_long_DIR |>
tidyr::pivot_wider(
names_from = trialid,
values_from = c(RAW, DIR),
names_glue = "{trialid}_{.value}") |>
# NAs for RAW and DIR items
dplyr::mutate(!!names_list$name_RAW_NA := rowSums(is.na(across((-matches(paste0(short_name_scale_str, "_", items_to_ignore, "_RAW")) & matches("_RAW$"))))),
!!names_list$name_DIR_NA := rowSums(is.na(across((-matches(paste0(short_name_scale_str, "_", items_to_ignore, "_DIR")) & matches("_DIR$"))))))
# Reliability -------------------------------------------------------------
# REL1 = auto_reliability(DF_wide_RAW, short_name_scale = short_name_scale_str, items = items_dimensions[[1]])
# items_RELd1 = REL1$item_selection_string
# [ADAPT]: Scales and dimensions calculations --------------------------------
# ****************************************************************************
# [USE STANDARD NAMES FOR Scales and dimensions: name_DIRt, name_DIRd1, etc.] Check with: standardized_names(help_names = TRUE)
DF_wide_RAW_DIR =
DF_wide_RAW |>
dplyr::mutate(
# Make sure to use the correct formula: rowMeans() / rowSums()
# Score Dimensions (see standardized_names(help_names = TRUE) for instructions)
!!names_list$name_DIRd[1] := rowSums(across(all_of(paste0(short_name_scale_str, "_", items_dimensions[[1]], "_DIR"))), na.rm = TRUE),
!!names_list$name_DIRd[2] := rowSums(across(all_of(paste0(short_name_scale_str, "_", items_dimensions[[2]], "_DIR"))), na.rm = TRUE),
# Reliability Dimensions (see standardized_names(help_names = TRUE) for instructions)
# !!names_list$name_RELd[1] := rowMeans(across(all_of(paste0(short_name_scale_str, "_", items_RELd1, "_DIR"))), na.rm = TRUE),
# Score Scale
!!names_list$name_DIRt := rowSums(across(all_of(matches("_DIR$"))), na.rm = TRUE)
)
# [END ADAPT]: ***************************************************************
# ****************************************************************************
# CHECK NAs -------------------------------------------------------------------
check_NAs(DF_wide_RAW_DIR)
# Save files --------------------------------------------------------------
save_files(DF_wide_RAW_DIR, short_name_scale = short_name_scale_str, is_scale = TRUE, output_formats = output_formats)
# Output of function ---------------------------------------------------------
return(DF_wide_RAW_DIR)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.