vadose.rank: Ranking and model performance assessment of vadose model...

Description Usage Arguments Value Author(s) Examples

Description

This function ranks and boxplots BEST, OFEST or lass3 goodness of fit objects. Various models in BEST and OFEST are ranked by either median or mean or max or any of the fun objects.

Usage

1
2
3
4
5
6
7
8
vadose.rank(data, var = c("r2", "d", "E", "RMSE", "ARE", "MBE"),
  model = "model", fun = "median", xlab = NULL, ylab = c("R-square",
  "Index of Agreement", "Nash-Sutcliffe", "RMSE", "Average Relative Error",
  "Mean Absolute Error"), main = c("R-square", "Index of Agreement",
  "Nash-Sutcliffe", "RMSE", "Average Relative Error", "Mean Bias Error"),
  ylim = list(c(0.99, 1), c(0.98, 1), c(0.9, 1), c(0, 2.5), c(0, 30), c(-0.2,
  0.2)), las = 2, opar = par(mfrow = c(2, 3), mar = c(7, 5, 2, 1)),
  myrank = NULL)

Arguments

data

dataframe of goodness of fit indicators

var

list of the indicators or variables that should be used to rank the models

model

character. The column name indicating the models that are to be ranked.

fun

Either median or mean or max or min or any of the fun objects

xlab

The x label of the boxplot

ylab

The y label of the boxplot

main

The title of the boxplot

ylim

The y limits of the boxplot

las

The orientation of x labels

opar

The par attributes

myrank

a redundant variable for internal use

Value

rank and fun.summary indicating the aggregation of the data by fun

Author(s)

George Owusu

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
data(offinbest) #infiltration data
data(offinpsd) #Particle size Distribution data
data(htheta) #measured h and theta
PSD=offinpsd
Figure2=group.BEST(data = offinbest, group="TownName",PSD=PSD,layout=c(3,4),hlog=TRUE,plot=FALSE)
Figure3=group.OFEST(data = offinbest, hg="best",group="TownName",PSD=PSD,layout=c(3,4),hlog=TRUE,type = "nonlinear",plot=FALSE)
data=rbind(Figure2$statistics2,Figure3$statistics2)
ranking=vadose.rank(data)
ranking$rank

MBE=vadose.rank(data,var="MBE",ylim=c(-1,2),ylab=NULL,main=NULL)
MPE=ranking=vadose.rank(data,var="MPE",ylim=c(-20,30),ylab=NULL,main=NULL)

gowusu/vadose documentation built on May 17, 2019, 7:59 a.m.