Description Usage Arguments Value Author(s) References Examples
Estimation of goodness of fit tests with model objects or comparing two models
1 |
object |
Function return object |
c |
comparing model, optional |
r |
reference model |
P |
The number of parameters |
r2: R-square [-]
r2_adj: An adjusted R-square [-]
d: Index of agreement[-]
p_value: p value
sse: Sum of square error
sst: Sum of square total
AIC: AIC
BIC: BIC
RMSE: Root Mean Square Error
RMSE_adj: adjusted Root Mean Square Error
NRMSE Normalised Root Mean Square Error
NRMSE_adj: adjusted Normalised Root Mean Square Error
E: Nash Sutcliffe Coefficient
Cp: statistic (Mallows 1973)
F1: F-statistic
AAE: average absolute error
ARE: average relative error
MBE: Mean Bias error
MPE: Mean Percentage error
George Owusu
Mallows, C. L. (1973). Some comments on Cp. Technometrics, 15, 661-675.
1 2 3 4 5 6 7 8 9 10 11 12 | data=read.csv(system.file("ext","sys","soil2.csv",package="vadose"))
single<- subset(data, ID=="30B20_1")
mod=lass3 (data=single,p="sand",D="D",fr="Sand.")
fit=gof(mod)
r2=fit$r2
AIC=fit$AIC
print (fit)
data=read.csv(system.file("ext","sys","exampleBEST.csv",package="vadose"))
philip1<-philip(data=data,time="time",I="I")
sw1<-sw(data=data,time="time",I="I")
thisgof=gof(c=gof(sw1),r=gof(philip1))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.