View source: R/grouplasso2pop.R
grouplasso2pop_gt_cv_fixedgrid | R Documentation |
Choose tuning parameters by crossvalidation for grouplasso2pop_gt when given a fixed grid of lambda and eta values
grouplasso2pop_gt_cv_fixedgrid( Y1, Z1, Se1, Sp1, X1, groups1, E.approx1 = FALSE, Y2, Z2, Se2, Sp2, X2, groups2, E.approx2 = FALSE, rho1, rho2, lambda.seq, eta.seq, n.folds, b1.init.arr, b2.init.arr, w1, w2, w, AA1, AA2, Com, tol = 0.001, maxiter = 500, report.prog = TRUE )
Y1 |
Group testing output for data set 1 in the format as output by one of the functions |
Z1 |
Group testing output for data set 1 in the format as output by one of the functions |
Se1 |
A vector of testing sensitivities, where the first element is the testing specificity for pools and the second entry is the test specificity for individual testing, if applicable. |
Sp1 |
A vector of testing specificities, where the first element is the testing specificity for pools and the second entry is the test specificity for individual testing, if applicable. |
X1 |
the matrix with the observed covariate values for data set 1 (including a column of ones for the intercept) |
groups1 |
a vector indicating to which group each covariate of data set 2 belongs |
E.approx1 |
a logical indicating whether the conditional expectations in the E-step should be computed approximately or exactly for data set 1 |
Y2 |
Group testing output for data set 2 in the format as output by one of the functions |
Z2 |
Group testing output for data set 2 in the format as output by one of the functions |
Se2 |
A vector of testing sensitivities, where the first element is the testing specificity for pools and the second entry is the test specificity for individual testing, if applicable. |
Sp2 |
A vector of testing specificities, where the first element is the testing specificity for pools and the second entry is the test specificity for individual testing, if applicable. |
X2 |
the matrix with the observed covariate values for data set 2 (including a column of ones for the intercept) |
groups2 |
a vector indicating to which group each covariate of data set 2 belongs |
E.approx2 |
a logical indicating whether the conditional expectations in the E-step should be computed approximately or exactly for data set 2 |
rho1 |
weight placed on the first data set |
rho2 |
weight placed on the second data set |
lambda.seq |
the sequence of lambda values |
eta.seq |
the sequence of eta values |
n.folds |
the number of crossvalidation folds |
b1.init.arr |
array of initial values for beta1 |
b2.init.arr |
array of initial values for beta2 |
w1 |
group-specific weights for different penalization across groups in data set 1 |
w2 |
group-specific weights for different penalization across groups in data set 2 |
w |
group-specific weights for different penalization toward similarity for different groups |
AA1 |
a list of the matrices A2j |
Com |
the indices of the covariate groups which are common in the two datasets |
tol |
a convergence criterion |
maxiter |
the maximum allowed number of iterations (EM steps) |
a list containing the fits over a grid of lambda and eta values as well as the vector of lambda values and the vector of eta values
grouplasso2pop_gt_data <- get_grouplasso2pop_data( n1 = 1000, n2 = 1200, response = "gt") grouplasso2pop_gt_grid.out <- grouplasso2pop_gt_grid(Y1 = grouplasso2pop_gt_data$Y1$I, Z1 = grouplasso2pop_gt_data$Y1$A, Se1 = grouplasso2pop_gt_data$Y1$Se, Sp1 = grouplasso2pop_gt_data$Y1$Sp, X1 = grouplasso2pop_gt_data$X1, groups1 = grouplasso2pop_gt_data$groups1, E.approx1 = grouplasso2pop_gt_data$Y1$E.approx, Y2 = grouplasso2pop_gt_data$Y2$I, Z2 = grouplasso2pop_gt_data$Y2$A, Se2 = grouplasso2pop_gt_data$Y2$Se, Sp2 = grouplasso2pop_gt_data$Y2$Sp, X2 = grouplasso2pop_gt_data$X2, groups2 = grouplasso2pop_gt_data$groups2, E.approx2 = grouplasso2pop_gt_data$Y2$E.approx, rho1 = 1, rho2 = 1, n.lambda = 10, n.eta = 5, lambda.min.ratio = 0.01, lambda.max.ratio = 0.50, eta.min.ratio = 0.01, eta.max.ratio = 1, w1 = grouplasso2pop_gt_data$w1, w2 = grouplasso2pop_gt_data$w2, w = grouplasso2pop_gt_data$w, AA1 = grouplasso2pop_gt_data$AA1, AA2 = grouplasso2pop_gt_data$AA2, Com = grouplasso2pop_gt_data$Com, tol = 1e-3, maxiter = 500, report.prog = TRUE) grouplasso2pop_gt_cv_fixedgrid.out <- grouplasso2pop_gt_cv_fixedgrid(Y1 = grouplasso2pop_gt_data$Y1$I, Z1 = grouplasso2pop_gt_data$Y1$A, Se1 = grouplasso2pop_gt_data$Y1$Se, Sp1 = grouplasso2pop_gt_data$Y1$Sp, X1 = grouplasso2pop_gt_data$X1, groups1 = grouplasso2pop_gt_data$groups1, E.approx1 = grouplasso2pop_gt_data$Y1$E.approx, Y2 = grouplasso2pop_gt_data$Y2$I, Z2 = grouplasso2pop_gt_data$Y2$A, Se2 = grouplasso2pop_gt_data$Y2$Se, Sp2 = grouplasso2pop_gt_data$Y2$Sp, X2 = grouplasso2pop_gt_data$X2, groups2 = grouplasso2pop_gt_data$groups2, E.approx2 = grouplasso2pop_gt_data$Y2$E.approx, rho1 = 1, rho2 = 1, lambda.seq = grouplasso2pop_gt_grid.out$lambda.seq, eta.seq = grouplasso2pop_gt_grid.out$eta.seq, n.folds = 5, b1.init.arr = grouplasso2pop_gt_grid.out$b1.arr, b2.init.arr = grouplasso2pop_gt_grid.out$b2.arr, w1 = grouplasso2pop_gt_data$w1, w2 = grouplasso2pop_gt_data$w2, w = grouplasso2pop_gt_data$w, AA1 = grouplasso2pop_gt_data$AA1, AA2 = grouplasso2pop_gt_data$AA2, Com = grouplasso2pop_gt_data$Com, tol = 1e-2, maxiter = 500)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.