View source: R/grouplasso2pop.R
grouplasso2pop_gt_grid | R Documentation |
Compute group lasso for two populations with group testing data over a grid of tuning parameter values
grouplasso2pop_gt_grid( Y1, Z1, Se1, Sp1, X1, groups1, E.approx1 = FALSE, Y2, Z2, Se2, Sp2, X2, groups2, E.approx2 = FALSE, rho1, rho2, n.lambda, n.eta, lambda.min.ratio, lambda.max.ratio = 1, eta.min.ratio = 0.001, eta.max.ratio = 10, w1, w2, w, AA1, AA2, Com, tol = 0.001, maxiter = 1000, report.prog = TRUE )
Y1 |
Group testing output for data set 1 in the format as output by one of the functions |
Z1 |
Group testing output for data set 1 in the format as output by one of the functions |
Se1 |
A vector of testing sensitivities, where the first element is the testing specificity for pools and the second entry is the test specificity for individual testing, if applicable. |
Sp1 |
A vector of testing specificities, where the first element is the testing specificity for pools and the second entry is the test specificity for individual testing, if applicable. |
X1 |
the matrix with the observed covariate values for data set 1 (including a column of ones for the intercept) |
groups1 |
a vector indicating to which group each covariate of data set 2 belongs |
E.approx1 |
a logical indicating whether the conditional expectations in the E-step should be computed approximately or exactly for data set 1 |
Y2 |
Group testing output for data set 2 in the format as output by one of the functions |
Z2 |
Group testing output for data set 2 in the format as output by one of the functions |
Se2 |
A vector of testing sensitivities, where the first element is the testing specificity for pools and the second entry is the test specificity for individual testing, if applicable. |
Sp2 |
A vector of testing specificities, where the first element is the testing specificity for pools and the second entry is the test specificity for individual testing, if applicable. |
X2 |
the matrix with the observed covariate values for data set 2 (including a column of ones for the intercept) |
groups2 |
a vector indicating to which group each covariate of data set 2 belongs |
E.approx2 |
a logical indicating whether the conditional expectations in the E-step should be computed approximately or exactly for data set 2 |
rho1 |
weight placed on the first data set |
rho2 |
weight placed on the second data set |
n.lambda |
the number of lambda values |
n.eta |
the number of eta values |
lambda.min.ratio |
ratio of the smallest lambda value to the smallest value of lambda which admits no variables to the model |
lambda.max.ratio |
ratio of the largest lambda value to the smallest value of lambda which admits no variables to the model |
eta.min.ratio |
ratio of the smallest to largest value in the sequence of eta values |
eta.max.ratio |
controls the largest value of eta in the eta sequence |
w1 |
group-specific weights for different penalization across groups in data set 1 |
w2 |
group-specific weights for different penalization across groups in data set 2 |
w |
group-specific weights for different penalization toward similarity for different groups |
AA1 |
a list of the matrices A2j |
Com |
the indices of the covariate groups which are common in the two datasets |
tol |
a convergence criterion |
maxiter |
the maximum allowed number of iterations (EM steps) |
report.prog |
a logical. If |
Returns the estimator of the parametric model with group testing data
grouplasso2pop_gt_data <- get_grouplasso2pop_data( n1 = 1000, n2 = 1200, response = "gt") grouplasso2pop_gt_grid.out <- grouplasso2pop_gt_grid(Y1 = grouplasso2pop_gt_data$Y1$I, Z1 = grouplasso2pop_gt_data$Y1$A, Se1 = grouplasso2pop_gt_data$Y1$Se, Sp1 = grouplasso2pop_gt_data$Y1$Sp, X1 = grouplasso2pop_gt_data$X1, groups1 = grouplasso2pop_gt_data$groups1, E.approx1 = grouplasso2pop_gt_data$Y1$E.approx, Y2 = grouplasso2pop_gt_data$Y2$I, Z2 = grouplasso2pop_gt_data$Y2$A, Se2 = grouplasso2pop_gt_data$Y2$Se, Sp2 = grouplasso2pop_gt_data$Y2$Sp, X2 = grouplasso2pop_gt_data$X2, groups2 = grouplasso2pop_gt_data$groups2, E.approx2 = grouplasso2pop_gt_data$Y2$E.approx, rho1 = 1, rho2 = 1, n.lambda = 10, n.eta = 5, lambda.min.ratio = 0.01, lambda.max.ratio = 0.50, eta.min.ratio = 0.01, eta.max.ratio = 1, w1 = grouplasso2pop_gt_data$w1, w2 = grouplasso2pop_gt_data$w2, w = grouplasso2pop_gt_data$w, AA1 = grouplasso2pop_gt_data$AA1, AA2 = grouplasso2pop_gt_data$AA2, Com = grouplasso2pop_gt_data$Com, tol = 1e-3, maxiter = 500, report.prog = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.