View source: R/grouplasso2pop.R
grouplasso2pop_linreg_grid | R Documentation |
Fit grouplasso2pop regression estimator over a grid of lambda and eta values
grouplasso2pop_linreg_grid( Y1, X1, groups1, Y2, X2, groups2, rho1, rho2, n.lambda, n.eta, lambda.min.ratio, lambda.max.ratio = 1, eta.min.ratio = 0.001, eta.max.ratio = 10, w1, w2, w, AA1, AA2, Com, tol = 1e-04, maxiter = 500, report.prog = FALSE )
Y1 |
the continuous response vector of data set 1 |
X1 |
matrix containing the design matrices for data set 1 |
groups1 |
a vector indicating to which group each covariate of data set 1 belongs |
Y2 |
the continuous response vector of data set 2 |
X2 |
matrix containing the design matrices for data set 2 |
groups2 |
a vector indicating to which group each covariate of data set 2 belongs |
rho1 |
weight placed on the first data set |
rho2 |
weight placed on the second data set |
n.lambda |
the number of lambda values desired |
n.eta |
the number of eta values desired |
lambda.min.ratio |
ratio of the smallest lambda value to the smallest value of lambda which admits no variables to the model |
lambda.max.ratio |
ratio of the largest lambda value to the smallest value of lambda which admits no variables to the model |
eta.min.ratio |
ratio of the smallest to largest value in the sequence of eta values |
eta.max.ratio |
controls the largest value of eta in the eta sequence |
w1 |
group-specific weights for different penalization across groups in data set 1 |
w2 |
group-specific weights for different penalization across groups in data set 2 |
w |
group-specific weights for different penalization toward similarity for different groups |
AA1 |
a list of the matrices A2j |
Com |
the indices of the covariate groups which are common in the two datasets |
tol |
a convergence criterion |
maxiter |
the maximum allowed number of iterations |
report.prog |
a logical indicating whether the progress of the algorithm should be printed to the console |
a list containing the fits over a grid of lambda and eta values as well as the vector of lambda values and the vector of eta values
data <- get_grouplasso2pop_data(n1 = 400, n2 = 600, response = "continuous") grouplasso2pop_lingreg_grid.out <- grouplasso2pop_linreg_grid(Y1 = data$Y1, X1 = data$X1, groups1 = data$groups1, Y2 = data$Y2, X2 = data$X2, groups2 = data$groups2, rho1 = 1, rho2 = 2, n.lambda = 10, n.eta = 5, lambda.min.ratio = 0.001, lambda.max.ratio = .5, w1 = data$w1, w2 = data$w2, w = data$w, AA1 = data$AA1, AA2 = data$AA2, Com = data$Com, tol = 1e-3, maxiter = 500, report.prog = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.