grouplasso2pop_linreg_grid: Fit grouplasso2pop regression estimator over a grid of lambda...

View source: R/grouplasso2pop.R

grouplasso2pop_linreg_gridR Documentation

Fit grouplasso2pop regression estimator over a grid of lambda and eta values

Description

Fit grouplasso2pop regression estimator over a grid of lambda and eta values

Usage

grouplasso2pop_linreg_grid(
  Y1,
  X1,
  groups1,
  Y2,
  X2,
  groups2,
  rho1,
  rho2,
  n.lambda,
  n.eta,
  lambda.min.ratio,
  lambda.max.ratio = 1,
  eta.min.ratio = 0.001,
  eta.max.ratio = 10,
  w1,
  w2,
  w,
  AA1,
  AA2,
  Com,
  tol = 1e-04,
  maxiter = 500,
  report.prog = FALSE
)

Arguments

Y1

the continuous response vector of data set 1

X1

matrix containing the design matrices for data set 1

groups1

a vector indicating to which group each covariate of data set 1 belongs

Y2

the continuous response vector of data set 2

X2

matrix containing the design matrices for data set 2

groups2

a vector indicating to which group each covariate of data set 2 belongs

rho1

weight placed on the first data set

rho2

weight placed on the second data set

n.lambda

the number of lambda values desired

n.eta

the number of eta values desired

lambda.min.ratio

ratio of the smallest lambda value to the smallest value of lambda which admits no variables to the model

lambda.max.ratio

ratio of the largest lambda value to the smallest value of lambda which admits no variables to the model

eta.min.ratio

ratio of the smallest to largest value in the sequence of eta values

eta.max.ratio

controls the largest value of eta in the eta sequence

w1

group-specific weights for different penalization across groups in data set 1

w2

group-specific weights for different penalization across groups in data set 2

w

group-specific weights for different penalization toward similarity for different groups

AA1

a list of the matrices A2j

Com

the indices of the covariate groups which are common in the two datasets

tol

a convergence criterion

maxiter

the maximum allowed number of iterations

report.prog

a logical indicating whether the progress of the algorithm should be printed to the console

Value

a list containing the fits over a grid of lambda and eta values as well as the vector of lambda values and the vector of eta values

Examples

data <- get_grouplasso2pop_data(n1 = 400, n2 = 600, response = "continuous")

grouplasso2pop_lingreg_grid.out <- grouplasso2pop_linreg_grid(Y1 = data$Y1,
                                                              X1 = data$X1,
                                                              groups1 = data$groups1,
                                                              Y2 = data$Y2,
                                                              X2 = data$X2,
                                                              groups2 = data$groups2,
                                                              rho1 = 1,
                                                              rho2 = 2,
                                                              n.lambda = 10,
                                                              n.eta = 5,
                                                              lambda.min.ratio = 0.001,
                                                              lambda.max.ratio = .5,
                                                              w1 = data$w1,
                                                              w2 = data$w2,
                                                              w = data$w,
                                                              AA1 = data$AA1,
                                                              AA2 = data$AA2,
                                                              Com = data$Com,
                                                              tol = 1e-3,
                                                              maxiter = 500,
                                                              report.prog = TRUE)

gregorkb/semipadd2pop documentation built on Oct. 2, 2022, 1:37 p.m.