View source: R/grouplasso2pop.R
grouplasso2pop_logreg_cv_fixedgrid | R Documentation |
Choose tuning parameters by crossvalidation for grouplasso2pop logreg when given a fixed grid of lambda and eta values
grouplasso2pop_logreg_cv_fixedgrid( Y1, X1, groups1, Y2, X2, groups2, rho1, rho2, lambda.seq, eta.seq, n.folds, b1.init.arr, b2.init.arr, w1, w2, w, AA1, AA2, Com, tol = 0.001, maxiter = 500, report.prog = FALSE )
Y1 |
the binary response vector of data set 1 |
X1 |
matrix containing the design matrices for data set 1 |
groups1 |
a vector indicating to which group each covariate of data set 1 belongs |
Y2 |
the binary response vector of data set 2 |
X2 |
matrix containing the design matrices for data set 2 |
groups2 |
a vector indicating to which group each covariate of data set 2 belongs |
rho1 |
weight placed on the first data set |
rho2 |
weight placed on the second data set |
lambda.seq |
sequence of lambda values |
eta.seq |
sequence of eta values |
n.folds |
the number of crossvalidation folds |
b1.init.arr |
array of initial values for beta1 |
b2.init.arr |
array of initial values for beta2 |
w1 |
group-specific weights for different penalization across groups in data set 1 |
w2 |
group-specific weights for different penalization across groups in data set 2 |
w |
group-specific weights for different penalization toward similarity for different groups |
AA1 |
a list of the matrices A2j |
Com |
the indices of the covariate groups which are common in the two datasets |
tol |
the convergence tolerance |
maxiter |
the maximum number of iterations allowed for each fit |
report.prog |
a logical indicating whether the progress of the algorithm should be printed to the console |
a list containing the fits over a grid of lambda and eta values as well as the vector of lambda values and the vector of eta values
grouplasso2pop_logreg_data <- get_grouplasso2pop_data(n1 = 1000, n2 = 800, response = "binary") grouplasso2pop_logreg_grid.out <- grouplasso2pop_logreg_grid(Y1 = grouplasso2pop_logreg_data$Y1, X1 = grouplasso2pop_logreg_data$X1, groups1 = grouplasso2pop_logreg_data$groups1, Y2 = grouplasso2pop_logreg_data$Y2, X2 = grouplasso2pop_logreg_data$X2, groups2 = grouplasso2pop_logreg_data$groups2, rho1 = 1, rho2 = 1, n.lambda = 5, n.eta = 3, lambda.min.ratio = 0.001, lambda.max.ratio = 0.50, w1 = grouplasso2pop_logreg_data$w1, w2 = grouplasso2pop_logreg_data$w2, w = grouplasso2pop_logreg_data$w, AA1 = grouplasso2pop_logreg_data$AA1, AA2 = grouplasso2pop_logreg_data$AA2, Com = grouplasso2pop_logreg_data$Com, tol = 1e-3, maxiter = 500, report.prog = TRUE) grouplasso2pop_logreg_cv_fixedgrid.out <- grouplasso2pop_logreg_cv_fixedgrid(Y1 = grouplasso2pop_logreg_data$Y1, X1 = grouplasso2pop_logreg_data$X1, groups1 = grouplasso2pop_logreg_data$groups1, Y2 = grouplasso2pop_logreg_data$Y2, X2 = grouplasso2pop_logreg_data$X2, groups2 = grouplasso2pop_logreg_data$groups2, rho1 = 1, rho2 = 1, lambda.seq = grouplasso2pop_logreg_grid.out$lambda.seq, eta.seq = grouplasso2pop_logreg_grid.out$eta.seq, n.folds = 5, b1.init.arr = grouplasso2pop_logreg_grid.out$b1.arr, b2.init.arr = grouplasso2pop_logreg_grid.out$b2.arr, w1 = grouplasso2pop_logreg_data$w1, w2 = grouplasso2pop_logreg_data$w2, w = grouplasso2pop_logreg_data$w, AA1 = grouplasso2pop_logreg_data$AA1, AA2 = grouplasso2pop_logreg_data$AA2, Com = grouplasso2pop_logreg_data$Com, tol = 1e-3, maxiter = 500, report.prog = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.