nordpred.prediction: Calculates predictions based on a nordpred.estimate object

Description Usage Arguments Value Note for S-plus Author(s) References See Also Examples

Description

nordpred.prediction uses a nordpred.estimate.object to calculate prediction of cancer incidence and mortality

Usage

1
2
nordpred.prediction(nordpred.estimate.object, startuseage, recent,
  cuttrend = c(0, 0.25, 0.5, 0.75, 0.75))

Arguments

nordpred.estimate.object

A glm-object based on nordpred.estimate (see nordpred.estimate.object).

startuseage

Youngest age group which uses regression model as basis for predicted rates

recent

Project average trend or use the slope for the last 10 years? (If recent = FALSE, average trend for the whole observation period is used, if recent = TRUE, the slope from the last 10 years is used)

cuttrend

Cut trend in predictions? (a vector of proportionsof drift to be cut in each projection period)

Value

an object of class nordpred (see nordpred.object).

Note for S-plus

Powerlink is made via a special modification in S-PLUS. This works fine for the point estimates, but the variance estimates found via the glm-objects are wrong. For variance estimates, we would rather recommend using R.

Author(s)

Harald Fekjaer and Bjorn Moller (Cancer Registry of Norway)

References

See Also

Other nordpred: is.nordpred.estimate, nordpred.estimate; is.nordpred, nordpred; nordpred.estimate.object; nordpred.getpred; nordpred.object; plot.nordpred; print.nordpred.estimate; print.nordpred; summary.nordpred

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
# data (Colon cancer for Norwegian males)
indata

# Create dataset with observed and predicted population
inpop <- cbind(inpop1, inpop2)

# Fit model using powerlink (default):
est <- nordpred.estimate(cases = indata, pyr = inpop, noperiod = 4, startestage = 5)

# Fit model using poisson link:
est2 <- nordpred.estimate(indata, inpop, 4, 5, linkfunc = 'poisson')

# Use estimat object to make predictions:
res <- nordpred.prediction(est,startuseage = 6, cuttrend = c(0, .25, .5, .75, .75), recent = TRUE)
res2 <- nordpred.prediction(est2, startuseage = 6,
             cuttrend = c(0, .25, .5, .75, .75), recent = TRUE)

# Get results:
print(res)
nordpred.getpred(res)
summary(res, printpred = FALSE)

haraldwf/nordpred documentation built on May 17, 2019, 2:41 p.m.