plot.nordpred: plots the predicted rates from a nordpred object

Description Usage Arguments Details Value Note for S-plus Author(s) References See Also Examples

Description

plot.nordpred uses nordpred object to plot observed and predicted rates

Usage

1
2
3
4
5
## S3 method for class 'nordpred'
plot(x, incidence = TRUE, standpop = NULL,
  agegroups = "all", startplot = 1, xlab = "", ylab = "", main = "",
  labels = NULL, ylim = NULL, lty = c(1, 3), col = c(1, 1),
  new = TRUE, ...)

Arguments

x

An object of class nordpred (see nordpred.object

incidence

Indicates whether to plot incidence or number of cases

standpop

A vector of weights for age standardisation. Default is no standardisation (crude rates), but using a standardisation (for the suitable no of age groups) is recommended

agegroups

Which agegroups to include

startplot

Numeric

xlab,ylab,main,ylim,lty,col

Arguments passed to plot and par

labels

character

new

Should a new plot be created (new = TRUE by default) or should new graphs be added to an existing plot (new = FALSE)?

...

Arguments passed to plot

Details

This function is a method for the generic function plot for class nordpred. It can be invoked by calling plot for an object of the appropriate class, or directly by calling plot.nordpred regardless of the class of the object. For more available options, see plot. For details of the choice of prediction base, significance test for using recent slope, and for the power5 model, see Moller B., Fekjaer H. et al. (2002), see references.

Value

object of class nordpred (see nordpred.object).

Note for S-plus

Powerlink is made via a special modification in S-PLUS. This works fine for the point estimates, but the variance estimates found via the glm-objects are wrong. For variance estimates, we would rather recommend using R.

Author(s)

Harald Fekjaer and Bjorn Moller (Cancer Registry of Norway)

References

See Also

Other nordpred: is.nordpred.estimate, nordpred.estimate; is.nordpred, nordpred; nordpred.estimate.object; nordpred.getpred; nordpred.object; nordpred.prediction; print.nordpred.estimate; print.nordpred; summary.nordpred

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# data (Colon cancer for Norwegian males)
indata

# Create dataset with observed and predicted population
inpop <- cbind(inpop1, inpop2)

# Fit model & predict new incidence:
res <- nordpred(indata, inpop, startestage = 5, startuseage = 6,
         cuttrend = c(0, .25, .5, .75, .75))
res2 <- nordpred(indata, inpop, startestage = 5, startuseage = 6,
     cuttrend = c(0, .25, .5, .75, .75), linkfunc = 'poisson')

# Get results with stanardiziotion:
wstand <- c(0.12, 0.1, 0.09, 0.09, 0.08, 0.08, 0.06, 0.06, 0.06, 0.06,0.05,
            0.04, 0.04, 0.03, 0.02, 0.01, 0.005, 0.005)
round(nordpred.getpred(res, incidence = TRUE, standpop = NULL), 2)
round(nordpred.getpred(res, incidence = TRUE, standpop = wstand), 2)

# Plot results:
plot(res, standpop = wstand)

# Plot results with power5 and poisson links:
plot(res2, standpop = wstand)
plot(res, new = FALSE, lty = c(1, 2), standpop = wstand)

# Different cut trend scenarios, using average drift (recent = FALSE):
est <- nordpred.estimate(cases = indata, pyr = inpop, noperiod = 4, startestage = 5)
plot(nordpred.prediction(est, startuseage = 6, cuttrend = c(0,0,0,0,0),
     recent = FALSE), standpop = wstand, new = TRUE)
plot(nordpred.prediction(est, startuseage = 6, cuttrend = c(1,1,1,1,1),
     recent = FALSE), standpop = wstand, new = FALSE, lty = c(1,2))
plot(nordpred.prediction(est,startuseage=6,cuttrend=c(0,.25,.5,.75,.75),
     recent = FALSE), standpop = wstand, new = FALSE, lty = c(1,4))

haraldwf/nordpred documentation built on May 17, 2019, 2:41 p.m.