R/diffSplice.R

Defines functions diffSplice

Documented in diffSplice

diffSplice <- function(fit,geneid,exonid=NULL,robust=FALSE,verbose=TRUE)
#	Test for splicing variants between conditions
#	using linear model fit of exon data.
#	Gordon Smyth and Charity Law
#	Created 13 Dec 2013.  Last modified 20 April 2017.
{
#	Make sure there is always an annotation frame
	exon.genes <- fit$genes
	if(is.null(exon.genes)) exon.genes <- data.frame(ExonID=1:nrow(fit))

#	Get ID columns for genes and exons
	if(length(geneid)==1) {
		genecolname <- as.character(geneid)
		geneid <- exon.genes[[genecolname]]
	} else {
		exon.genes$GeneID <- geneid
		genecolname <- "GeneID"
	}
	if(is.null(exonid)) {
		exoncolname <- NULL
	} else {
		if(length(exonid)==1) {
			exoncolname <- as.character(exonid)
			exonid <- exon.genes[[exoncolname]]
		} else {
			exon.genes$ExonID <- exonid
			exoncolname <- "ExonID"
		}
	}

#	Treat NA geneids as genes with one exon
	if(anyNA(geneid)) {
		isna <- which(is.na(geneid))
		geneid[isna] <- paste0("NA",1:length(isna))
	}

#	Sort by geneid
	if(is.null(exonid))
		o <- order(geneid)
	else
		o <- order(geneid,exonid)
	geneid <- geneid[o]
	exon.genes <- exon.genes[o,,drop=FALSE]
	exon.coefficients <- fit$coefficients[o,,drop=FALSE]
	exon.stdev.unscaled <- fit$stdev.unscaled[o,,drop=FALSE]
	exon.df.residual <- fit$df.residual[o]
	exon.s2 <- fit$sigma[o]^2

# 	Count exons by gene and get genewise variances
	exon.stat <- cbind(1,exon.df.residual,exon.s2)
	gene.sum <- rowsum(exon.stat,geneid,reorder=FALSE)
	gene.nexons <- gene.sum[,1]
	gene.df.residual <- gene.sum[,2]
	gene.s2 <- gene.sum[,3] / gene.sum[,1]
	if(verbose) {
		cat("Total number of exons: ", length(geneid), "\n")
		cat("Total number of genes: ", length(gene.nexons), "\n")
		cat("Number of genes with 1 exon: ", sum(gene.nexons==1), "\n")
		cat("Mean number of exons in a gene: ", round(mean(gene.nexons),0), "\n")
		cat("Max number of exons in a gene: ", max(gene.nexons), "\n")
	}

#	Posterior genewise variances
	squeeze <- squeezeVar(var=gene.s2, df=gene.df.residual, robust=robust)

#	Remove genes with only 1 exon
	gene.keep <- gene.nexons>1
	ngenes <- sum(gene.keep)
	if(ngenes==0) stop("No genes with more than one exon")

	exon.keep <- rep(gene.keep,gene.nexons)
	geneid <- geneid[exon.keep]
	exon.genes <- exon.genes[exon.keep,,drop=FALSE]
	exon.coefficients <- exon.coefficients[exon.keep,,drop=FALSE]
	exon.stdev.unscaled <- exon.stdev.unscaled[exon.keep,,drop=FALSE]
	exon.df.residual <- exon.df.residual[exon.keep]

	gene.nexons <- gene.nexons[gene.keep]
	gene.df.test <- gene.nexons-1
	gene.df.residual <- gene.df.residual[gene.keep]
	if(robust) squeeze$df.prior <- squeeze$df.prior[gene.keep]
	gene.df.total <- gene.df.residual+squeeze$df.prior
	gene.df.total <- pmin(gene.df.total,sum(gene.df.residual))
	gene.s2.post <- squeeze$var.post[gene.keep]

# 	Genewise betas
	u2 <- 1/exon.stdev.unscaled^2
	u2.rowsum <- rowsum(u2,geneid,reorder=FALSE)
	gene.betabar <- rowsum(exon.coefficients*u2,geneid,reorder=FALSE) / u2.rowsum

#	T-statistics for exon-level tests
	g <- rep(1:ngenes,times=gene.nexons)
	exon.coefficients <- exon.coefficients-gene.betabar[g,,drop=FALSE]
	exon.t <- exon.coefficients / exon.stdev.unscaled / sqrt(gene.s2.post[g])
	gene.F <- rowsum(exon.t^2,geneid,reorder=FALSE) / gene.df.test
	exon.1mleverage <- 1 - (u2 / u2.rowsum[g,,drop=FALSE])
	exon.coefficients <- exon.coefficients / exon.1mleverage
	exon.t <- exon.t / sqrt(exon.1mleverage)
	exon.p.value <- 2 * pt(abs(exon.t), df=gene.df.total[g], lower.tail=FALSE)
	gene.F.p.value <- pf(gene.F, df1=gene.df.test, df2=gene.df.total, lower.tail=FALSE)

#	Exon level output
	out <- new("MArrayLM",list())
	out$genes <- exon.genes
	out$genecolname <- genecolname
	out$exoncolname <- exoncolname
	out$coefficients <- exon.coefficients
	out$t <- exon.t
	out$p.value <- exon.p.value

#	Gene level output
	out$gene.df.prior <- squeeze$df.prior
	out$gene.df.residual <- gene.df.residual
	out$gene.df.total <- gene.df.total
	out$gene.s2 <- gene.s2[gene.keep]
	out$gene.s2.post <- gene.s2.post
	out$gene.F <- gene.F
	out$gene.F.p.value <- gene.F.p.value

#	Which columns of exon.genes contain gene level annotation?
	gene.lastexon <- cumsum(gene.nexons)
	gene.firstexon <- gene.lastexon-gene.nexons+1
	no <- logical(nrow(exon.genes))
	isdup <- vapply(exon.genes,duplicated,no)[-gene.firstexon,,drop=FALSE]
	isgenelevel <- apply(isdup,2,all)
	out$gene.genes <- exon.genes[gene.lastexon,isgenelevel, drop=FALSE]
	out$gene.genes$NExons <- gene.nexons
	out$gene.firstexon <- gene.firstexon
	out$gene.lastexon <- gene.lastexon

#	Simes adjustment of exon level p-values
	penalty <- rep_len(1L,length(g))
	penalty[gene.lastexon] <- 1L-gene.nexons
	penalty <- cumsum(penalty)[-gene.lastexon]
	penalty <- penalty / rep(gene.nexons-1L,gene.nexons-1L)
	g2 <- g[-gene.lastexon]

	out$gene.simes.p.value <- gene.F.p.value
	for (j in 1:ncol(fit)) {
		o <- order(g,exon.p.value[,j])
		p.adj <- pmin(exon.p.value[o,j][-gene.lastexon] / penalty, 1)
		o <- order(g2,p.adj)
		out$gene.simes.p.value[,j] <- p.adj[o][gene.firstexon-0L:(ngenes-1L)]
	}

	out
}
hdeberg/limma documentation built on Dec. 20, 2021, 3:43 p.m.