ecoGroup: An example of a transformation 'function'

Description Usage Arguments Format Details Warning Examples

Description

This dataset is a list, cast in matrix format, that can be used to lump ecotypes into coarser groups for analysis and plotting. The current implementation includes vectors for: transformation, naming/labelling, and suggested plotting colours

Usage

1
ecoGroup[[which.grouping,type.of.data]]

Arguments

which.grouping

one of c('identity','domSpecies','domGroup','maxGranularity'), see Format.

type.of.data

one of c('transform','labels','colours'), see Format.

Format

A list cast into matrix format with four rows (grouping scenarios) and three columns (possible data types for that scenario). The four different grouping scenarios are:

The different types of data that can be extracted are:

Details

This built-in transformation 'function' encodes several different grouping scenarios. Each is provided with labels for the groups as well as suggested colours. Following is a description of the four build-in encoding for the FEC classification system McLaughlan, M. S., Robert A. Wright, and R. D. Jiricka. Field Guide to the Ecosites of Saskatchewan's Provincial Forests. Prince Albert, Sask: Ministry of Environment, 2010.

Ecotype Dominant Species Class Dominant Group Class Maximum Granularity Class
BS 01 -- Sand heather 1 (barren) 1 (barren) 1 (sparse vegetation)
BS 02 -- Lichen felsenmeer 1 1 1
BS 03 -- Jack pine, blueberry, lichen 2 (pine) 2 (conifer) 2
BS 04 -- Jack pine, black spruce, feathermoss 2 2 3
BS 05 -- Jack pine, birch, feathermoss 2 2 4
BS 06 -- Jack pine, aspen, alder 2 2 5
BS 07 -- Black spruce, blueberry, lichen 3 (bs) 2 6
BS 08 -- Black spruce, birch, lichen 3 2 7
BS 09 -- Black spruce, pine, feathermoss 3 2 8
BS 10 -- Black spruce, birch, feathermoss 3 2 9
BS 11 -- White spruce, fir, feathermoss 4 (ws) 2 10
BS 12 -- White spruce, crowberry, feathermoss 4 2 11
BS 13 -- Birch, black spruce, aspen 5 (birch) 3 (decid) 12
BS 14 -- Birch, lingonberry, lab tea 5 3 13
BS 15 -- Aspen, birch, alder 6 (aspen) 3 14
BS 16 -- Black spruce, poplar, alder swamp 7 (swamp) 4 (wetland) 15 (group swamp in with treed bog)
BS 17 -- Black spruce bog 8 (bog) 4 15
BS 18 -- Lab tea shrubby bog 8 4 16
BS 19 -- Graminoid bog 8 4 17 (sparse bog)
BS 20 -- Open bog 8 4 17
BS 21 -- Tamarack fen 9 (fen) 4 18 (upright fen)
BS 22 -- Leatherleaf fen 9 4 18
BS 23 -- Willow shrubby fen 9 4 19
BS 24 -- Graminoid fen 9 4 20 (sparse fen)
BS 25 -- Open fen 9 4 20
BS 26 -- Rush sandy shore 10 (shore) 4 21 (shoreline)
BS 27 -- Sedge rocky shore 10 4 21

Warning

The following expressions will not work as transformation functions. See factor, especially the Warning section for more information on this gotcha.

siteData$Ecotype returns a factor list, not a numeric list representing the factors.

ecoGroup[['identity','transform']][siteData$Ecotype] will regroup based on the factor level indices, NOT the factors.

as.numeric(siteData$Ecotype] returns the factor indices, not a numeric representation of the factors.

(1:27)[siteData$Ecotype] returns the factor index rather than the ecoGroup.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
data (siteData)
ecoGroup[['domSpecies','transform']][ factorValues(siteData$ecoType) ]

## Code for generating this object--so you can make your own!
# Create a shell to fill with data
ecoGroup <- list(); length(ecoGroup) <- 12;
dim(ecoGroup) <- c(4,3)               # Three rows (classifiers), three columns (type of data)
rownames(ecoGroup)=c('identity','domSpecies','maxGranularity','domGroup')
colnames(ecoGroup)=c('transform','labels','colours')

# Fill with data in increasing order of lumping
ecoGroup['identity',] <- list(
  c(1:27),
  paste0('BS',1:27),
  c('#FFFF00','#E6E600','#FF9900','#E47A07','#BD6A06','#965B05','#4C7300','#5E8D00','#70A800',
    '#82C300','#008C4B','#00A04B','#ABFF8F','#42FF07','#7EFF54','#41DBCF','#00A884','#3FC5A5',
    '#7EE2C6','#BEFFE8','#97E2FF','#8DD4F0','#83C6E1','#79B8D2', '#6FABC3','#AC44E7','#C077E3')
)
ecoGroup['maxGranularity',] <- list(
  c(1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,15,16,17,17,18,18,19,20,20,21,21),
  c('Sparse',paste0('BS',3:15),'Treed bog/swamp','BS18','Sparse bog','Upright fen','BS23','Sparse fen','Shoreline'),
  c('#E6E600','#FF9900','#E47A07','#BD6A06','#965B05','#4C7300','#5E8D00','#70A800','#82C300',
    '#008C4B','#00A04B','#ABFF8F','#42FF07','#7EFF54','#00A884','#3FC5A5','#BEFFE8','#97E2FF',
    '#83C6E1','#6FABC3','#C077E3')
)
ecoGroup['domSpecies',] <- list(
  c(1,1,2,2,2,2,3,3,3,3,4,4,5,5,6,7,8,8,8,8,9,9,9,9,9,10,10),
  c('1'="Barren",'2'="Pine",'3'="Black Sp",'4'="White Sp",'5'="Birch",'6'="Aspen",'7'="Swamp",
    '8'="Bog",'9'="Fen",'10'="Shore"),
  c('E6E600','E47A07','70A800','00A04B','42FF07','41DBCF','3FC5A5','83C6E1','C077E3','004DA8','000000')
)
ecoGroup['domGroup',] <- list(
  c(1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4),
  c("Barren","Conifer","Decid","Wetland"),
  c('E6E600','00A04B','42FF07','83C6E1')
)

henkelstone/NPEL.Classification documentation built on May 17, 2019, 3:42 p.m.