#' Clustering using mstil given a fixed number of clusters in parallel.
#' @param x a n x k matrix, representing n k-variate samples.
#' @param K positive integer, number of cluster.
#' @param ncore number of cpu core to be used in parallel. By default 1.
#' @param numTrial a positive integer, number of trials to be evaluated.
#' @param init.cluster.method a function of x, K that seperates x into K initial clusters.
#' @param init.param.method a functino of x, return initial parameters.
#' @param show.progress show progress on console.
#' @param control list of control variables, it accepts all control arguments used in fit.fmmstil.r and fit.fmmsil. In this case, the default lambdaPenalty is 0.01 and the default cvgTolR is 0.1 instead.
#' @return a list with components:
#' \item{restricted}{a list containing details of the best fitted fmmstil.r.}
#' \item{unrestricted}{a list containing details of the best fitted fmmstil.}
#' \item{recordR}{a list of list containing details all fitted fmmstil.r.}
#' @export
#' @examples
#' # Not run:
#' # data(RiverFlow)
#' # cluster.fmmstil.L.parallel(as.matrix(log(RiverFlow)),2,2)
cluster.fmmstil.K.parallel <- function(x, K, ncore = 1, numTrial = 1, init.cluster.method, init.param.method, show.progress = TRUE, control = list()) {
if (!"lambdaPenalty" %in% names(control)) control$lambdaPenalty <- 1e-2
if (!"cvgTolR" %in% names(control)) control$cvgTolR <- 1e-1
if (ncore > parallel::detectCores()) {
warning("Not enough available core")
ncore <- parallel::detectCores()
}
if (missing(init.cluster.method)) init.cluster.method <- .default.init.cluster.method
if (missing(init.param.method)) init.param.method <- .default.init.param.method
if (show.progress) cat("\n", "MSTIL.R", "\t", "K : ", K, "\t", "Number of Trials : ", numTrial)
seedFmmstil <- sample(.Machine$integer.max, 1)
initParamList <- list()
for (trial in 1:numTrial){
initParamList[[trial]] <- list(omega = list(), lambda = list(), delta = list(), Ainv = list(), nu = list())
initCluster <- init.cluster.method(x, K)
initParamList[[trial]]$omega <- as.list(table(initCluster) / length(initCluster))
for (kk in 1:K){
initFit <- init.param.method(x[which(initCluster == kk),])
initParamList[[trial]]$lambda[[kk]] = initFit$lambda
initParamList[[trial]]$delta[[kk]] = initFit$delta
initParamList[[trial]]$Ainv[[kk]] = initFit$Ainv
initParamList[[trial]]$nu[[kk]] = initFit$nu
}
}
fit.fmmstil.r.seed <- function(trial, data, K, initParamList, control = list()){
init.cluster = init.cluster.method(data,K)
res1 <- fit.fmmstil.r(data, K, initParamList[[trial]], show.progress = FALSE, control = control)
par <- res1$par[[which.max(res1$logLik)]]
fitness1 <- fmmstil.r.fitness(x, par)
res1$ICL <- fitness1$ICL
res1$clust <- fitness1$clust
res1$AIC <- fitness1$AIC
res1$BIC <- fitness1$BIC
return(res1)
}
resRec <- parallel::mclapply(1:numTrial, fit.fmmstil.r.seed , mc.cores = ncore, data = x, K = K, initParamList = initParamList, control = control)
set.seed(seedFmmstil)
ICLRec <- c()
for (i in 1:numTrial) ICLRec <- c(ICLRec, resRec[[i]]$ICL)
res1Best <- resRec[[which.max(ICLRec)]]
par <- res1Best$par[[which.max(res1Best$logLik)]]
if (show.progress) cat("\t", "Max ICL : ", (round(max(ICLRec), 2)))
if (show.progress) cat("\n", "MSTIL ", "\t", "K : ", K, "\t")
res2Best <- tryCatch(fit.fmmstil(x, K, param = par, show.progress = FALSE, control = control),
error = function(e) res1Best,
warning = function(w) res1Best
)
par <- res2Best$par[[which.max(res2Best$logLik)]]
fitness2 <- fmmstil.fitness(x, par)
res2Best$ICL <- fitness2$ICL
res2Best$clust <- fitness2$clust
res2Best$AIC <- fitness2$AIC
res2Best$BIC <- fitness2$BIC
if (show.progress) cat("\t", "Max ICL : ", (round(max(ICLRec, res2Best$ICL), 2)))
return(list(restricted = res1Best, unrestricted = res2Best, recordR = resRec))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.