#' @title Intra- and Inter-individual \code{\link[EGAnet]{dynEGA}}
#'
#' @description A wrapper function to estimate both intraindividiual
#' (\code{level = "individual"}) and interindividual (\code{level = "population"})
#' structures using \code{\link[EGAnet]{dynEGA}}
#'
#' @param data Matrix or data frame.
#' Participants and variable should be in long format such that
#' row \emph{t} represents observations for all variables at time point
#' \emph{t} for a participant. The next row, \emph{t + 1}, represents
#' the next measurement occasion for that same participant. The next
#' participant's data should immediately follow, in the same pattern,
#' after the previous participant
#'
#' \code{data} should have an ID variable labeled \code{"ID"}; otherwise, it is
#' assumed that the data represent the population
#'
#' For groups, \code{data} should have a Group variable labeled \code{"Group"};
#' otherwise, it is assumed that there are no groups in \code{data}
#'
#' Arguments \code{id} and \code{group} can be specified to tell the function
#' which column in \code{data} it should use as the ID and Group variable, respectively
#'
#' A measurement occasion variable is not necessary and should be \emph{removed}
#' from the data before proceeding with the analysis
#'
#' @param id Numeric or character (length = 1).
#' Number or name of the column identifying each individual.
#' Defaults to \code{NULL}
#'
#' @param n.embed Numeric (length = 1).
#' Defaults to \code{5}.
#' Number of embedded dimensions (the number of observations to
#' be used in the \code{\link[EGAnet]{Embed}} function). For example,
#' an \code{"n.embed = 5"} will use five consecutive observations
#' to estimate a single derivative
#'
#' @param tau Numeric (length = 1).
#' Defaults to \code{1}.
#' Number of observations to offset successive embeddings in
#' the \code{\link[EGAnet]{Embed}} function.
#' Generally recommended to leave "as is"
#'
#' @param delta Numeric (length = 1).
#' Defaults to \code{1}.
#' The time between successive observations in the time series (i.e, lag).
#' Generally recommended to leave "as is"
#'
#' @param use.derivatives Numeric (length = 1).
#' Defaults to \code{1}.
#' The order of the derivative to be used in the analysis.
#' Available options:
#'
#' \itemize{
#'
#' \item \code{0} --- No derivatives; consistent with moving average
#'
#' \item \code{1} --- First-order derivatives; interpreted as "velocity" or
#' rate of change over time
#'
#' \item \code{2} --- Second-order derivatives; interpreted as "acceleration" or
#' rate of the rate of change over time
#'
#' }
#'
#' Generally recommended to leave "as is"
#'
#' @param corr Character (length = 1).
#' Method to compute correlations.
#' Defaults to \code{"auto"}.
#' Available options:
#'
#' \itemize{
#'
#' \item \code{"auto"} --- Automatically computes appropriate correlations for
#' the data using Pearson's for continuous, polychoric for ordinal,
#' tetrachoric for binary, and polyserial/biserial for ordinal/binary with
#' continuous. To change the number of categories that are considered
#' ordinal, use \code{ordinal.categories}
#' (see \code{\link[EGAnet]{polychoric.matrix}} for more details)
#'
#' \item \code{"cor_auto"} --- Uses \code{\link[qgraph]{cor_auto}} to compute correlations.
#' Arguments can be passed along to the function
#'
#' \item \code{"pearson"} --- Pearson's correlation is computed for all
#' variables regardless of categories
#'
#' \item \code{"spearman"} --- Spearman's rank-order correlation is computed
#' for all variables regardless of categories
#'
#' }
#'
#' For other similarity measures, compute them first and input them
#' into \code{data} with the sample size (\code{n})
#'
#' @param na.data Character (length = 1).
#' How should missing data be handled?
#' Defaults to \code{"pairwise"}.
#' Available options:
#'
#' \itemize{
#'
#' \item \code{"pairwise"} --- Computes correlation for all available cases between
#' two variables
#'
#' \item \code{"listwise"} --- Computes correlation for all complete cases in the dataset
#'
#' }
#'
#' @param model Character (length = 1).
#' Defaults to \code{"glasso"}.
#' Available options:
#'
#' \itemize{
#'
#' \item \code{"BGGM"} --- Computes the Bayesian Gaussian Graphical Model.
#' Set argument \code{ordinal.categories} to determine
#' levels allowed for a variable to be considered ordinal.
#' See \code{?BGGM::estimate} for more details
#'
#' \item \code{"glasso"} --- Computes the GLASSO with EBIC model selection.
#' See \code{\link[EGAnet]{EBICglasso.qgraph}} for more details
#'
#' \item \code{"TMFG"} --- Computes the TMFG method.
#' See \code{\link[EGAnet]{TMFG}} for more details
#'
#' }
#'
#' @param algorithm Character or
#' \code{igraph} \code{cluster_*} function (length = 1).
#' Defaults to \code{"walktrap"}.
#' Three options are listed below but all are available
#' (see \code{\link[EGAnet]{community.detection}} for other options):
#'
#' \itemize{
#'
#' \item \code{"leiden"} --- See \code{\link[igraph]{cluster_leiden}} for more details
#'
#' \item \code{"louvain"} --- By default, \code{"louvain"} will implement the Louvain algorithm using
#' the consensus clustering method (see \code{\link[EGAnet]{community.consensus}}
#' for more information). This function will implement
#' \code{consensus.method = "most_common"} and \code{consensus.iter = 1000}
#' unless specified otherwise
#'
#' \item \code{"walktrap"} --- See \code{\link[igraph]{cluster_walktrap}} for more details
#'
#' }
#'
#' @param uni.method Character (length = 1).
#' What unidimensionality method should be used?
#' Defaults to \code{"louvain"}.
#' Available options:
#'
#' \itemize{
#'
#' \item \code{"expand"} --- Expands the correlation matrix with four variables correlated 0.50.
#' If number of dimension returns 2 or less in check, then the data
#' are unidimensional; otherwise, regular EGA with no matrix
#' expansion is used. This method was used in the Golino et al.'s (2020)
#' \emph{Psychological Methods} simulation
#'
#' \item \code{"LE"} --- Applies the Leading Eigenvector algorithm
#' (\code{\link[igraph]{cluster_leading_eigen}})
#' on the empirical correlation matrix. If the number of dimensions is 1,
#' then the Leading Eigenvector solution is used; otherwise, regular EGA
#' is used. This method was used in the Christensen et al.'s (2023)
#' \emph{Behavior Research Methods} simulation
#'
#' \item \code{"louvain"} --- Applies the Louvain algorithm (\code{\link[igraph]{cluster_louvain}})
#' on the empirical correlation matrix. If the number of dimensions is 1,
#' then the Louvain solution is used; otherwise, regular EGA is used.
#' This method was validated Christensen's (2022) \emph{PsyArXiv} simulation.
#' Consensus clustering can be used by specifying either
#' \code{"consensus.method"} or \code{"consensus.iter"}
#'
#' }
#'
#' @param ncores Numeric (length = 1).
#' Number of cores to use in computing results.
#' Defaults to \code{ceiling(parallel::detectCores() / 2)} or half of your
#' computer's processing power.
#' Set to \code{1} to not use parallel computing
#'
#' If you're unsure how many cores your computer has,
#' then type: \code{parallel::detectCores()}
#'
#' @param verbose Boolean (length = 1).
#' Should progress be displayed?
#' Defaults to \code{TRUE}.
#' Set to \code{FALSE} to not display progress
#'
#' @param ... Additional arguments to be passed on to
#' \code{\link[EGAnet]{auto.correlate}},
#' \code{\link[EGAnet]{network.estimation}},
#' \code{\link[EGAnet]{community.detection}},
#' \code{\link[EGAnet]{community.consensus}}, and
#' \code{\link[EGAnet]{EGA}}
#'
#' @return Same output as \code{EGAnet{dynEGA}} returning list
#' objects for \code{level = "individual"} and \code{level = "population"}
#'
#' @author Hudson Golino <hfg9s at virginia.edu>
#'
#' @examples
#' # Obtain data
#' sim.dynEGA <- sim.dynEGA # bypasses CRAN checks
#'
#' \dontrun{
#' # Dynamic EGA individual and population structure
#' dyn.ega1 <- dynEGA.ind.pop(
#' data = sim.dynEGA, n.embed = 5, tau = 1,
#' delta = 1, id = 25, use.derivatives = 1,
#' ncores = 2, corr = "pearson"
#' )}
#'
#' @seealso \code{\link[EGAnet]{plot.EGAnet}} for plot usage in \code{EGAnet}
#'
#' @export
#'
# Intra- and Interindividual dynEGA
# Updated 24.10.2023
dynEGA.ind.pop <- function(
# `dynEGA` arguments
data, id = NULL,
n.embed = 5, tau = 1, delta = 1, use.derivatives = 1,
# `EGA` arguments
corr = c("auto", "cor_auto", "pearson", "spearman"),
na.data = c("pairwise", "listwise"),
model = c("BGGM", "glasso", "TMFG"),
algorithm = c("leiden", "louvain", "walktrap"),
uni.method = c("expand", "LE", "louvain"),
ncores, verbose = TRUE, ...
){
# Use `dynEGA` (input handling occurs inside `dynEGA`)
return(
dynEGA(
data = data, id = id, n.embed = n.embed, tau = tau,
delta = delta, use.derivatives = use.derivatives,
level = c("population", "individual"),
corr = corr, na.data = na.data,
model = model, algorithm = algorithm, uni.method = uni.method,
ncores = ncores, verbose = verbose, ...
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.