#' Summarizes a fitted spatial linear model
#'
#' @param object is an object generated from \code{\link{slmfit}}.
#' @param ... are options to be passed to \code{print}
#' @return a list with \itemize{
#' \item model formula
#' \item a table of fixed effects estimates and associated standard errors. For models with detection, these are the fixed effects estimates for the abundance model. Due to the complexity in estimating the fixed effects, standard errors and p-values are not given in the summary output when using detection from radiocollar data.
#' \item estimated spatial covariance parameter estimates
#' \item residuals
#' }
#' @import stats
#' @export
summary.slmfit <- function(object, ...) {
catcall <- object$FPBKpredobj$formula
predictornames <- object$PredictorNames
NAvec <- rep(NA, times = length(predictornames))
regcoefs <- object$CoefficientEsts
regvar <- object$BetaCov
p <- length(regcoefs)
n <- object$SampSize
sereg <- sqrt(diag(as.matrix(regvar)))
tvec <- NAvec
tvec <- regcoefs / sereg
pvec <- NAvec
pvec <- round(100000 * (1 - pt(abs(regcoefs / sereg),
df = n - p)) * 2) / 100000
fixed.eff.est <- data.frame(##FactorLevel = predictornames,
Estimate = regcoefs,
std.err = sereg, t.value = tvec, prob.t = pvec)
fixed.effects.estimates = fixed.eff.est
covmodels <- object$SpatialParmEsts
covmodelout <- data.frame(covmodels)
colnames(covmodelout) <- paste(object$CovarianceMod, "Model")
resid_vec <- object$resids
##residualsum <- c(min(residuals), quantile(residuals, c(0.25, 0.5,
## 0.75)), max(residuals))
##generalizedr2 <- GR2(object)
outpt <- list(catcall = catcall,
fixed.effects.estimates = fixed.effects.estimates,
covariance.parameters = covmodelout,
resid_vec)
##generalizedr2)
names(outpt) <- c("catCall", "FixedEffects", "CovarianceParms",
"Residuals") ##"GeneralizedR2")
class(outpt) <- "summary.slmfit"
return(outpt)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.