#' Simulate geostatistical data on set of given locations
#'
#' Spatially correlated data are simulated assuming a multivariate normal
#' random error vector. For simplicity, only \code{"Exponential"} and
#' \code{"Spherical"} simulation options are given here.
#'
#' @param loc.data data.frame with x- and y-coordinates of locations
#' for simulated data
#' @param xcol name of the column in loc.data with x-coordinates,
#' default is "x"
#' @param ycol name of the column loc.data with y-coordinates, default is "y"
#' @param parsil partial sill of autocorrelation model, default = 1
#' @param range range of autocorrelation model, default = 1
#' @param nugget range of autocorrelation model, default = 0
#' @param minorp proportion of range in x direction to that of y
#' direction for unrotated anisotropic model, default = 1
#' @param rotate rotation of anisotropic axes, default = 90
#' @param extrap extra covariance parameter
#' @param CorModel autocorrelation model, default = "Exponential".
#' Other possibilities are "Spherical".
#'
#' @examples
#' locations <- expand.grid(1:10, 1:10)
#' geostatSim(locations, xcol = "Var1", ycol = "Var2",
#' parsil = 4, range = 20, nugget = 1, CorModel = "Exponential")
#' @return data.frame of three columns, the original location data
#' appended with a 3rd column of simulated geostatistical data
#'
#' @author Jay Ver Hoef
#' @export
geostatSim <- function(loc.data, xcol = "x", ycol = "y",
parsil = 1, range = 1, nugget = 0,
minorp = 1, rotate = 90, extrap = NULL,
CorModel = "Exponential")
{
distGeoAni <- function(xrow, yrow, xcol, ycol,
rotate = 0, range = 1, minorp = 1)
{
# expand all x-coordinates
sxr <- matrix(xrow, nrow = length(xrow), ncol = length(xcol))
sxc <- matrix(xcol, nrow = length(xrow), ncol = length(xcol),
byrow = TRUE)
syr <- matrix(yrow, nrow = length(yrow), ncol = length(ycol))
syc <- matrix(ycol, nrow = length(yrow), ncol = length(ycol),
byrow = TRUE)
# find difference in coordinates between all pairwise locations
sxdif <- sxr - sxc
sydif <- syr - syc
# rotate coordinates
newx <- cos(rotate*.0174533)*sxdif - sin(rotate*.0174533)*sydif
newy <- sin(rotate*.0174533)*sxdif + cos(rotate*.0174533)*sydif
# scale coordinates by minor and major axes */
newx <- newx/(range*minorp)
newy <- newy/range
# compute distance for the scaled and rotated coordinates */
sqrt(newx^2 + newy^2)
}
xcoord <- loc.data[,xcol]
ycoord <- loc.data[,ycol]
n <- length(xcoord)
dismat <- distGeoAni(xcoord, ycoord, xcoord, ycoord, rotate, range, minorp)
# compute correlation matrix for scaled distance matrix
if(CorModel == "Exponential") CovMat <- corModelExponential(dismat, 1)
# if(CorModel == "ExpRadon2") CovMat <- CorModel.ExpRadon2(dismat)
# if(CorModel == "ExpRadon4") CovMat <- CorModel.ExpRadon4(dismat)
# if(CorModel == "Gaussian") CovMat <- CorModel.Gaussian(dismat)
# if(CorModel == "Stable") CovMat <- CorModel.Stable(dismat, extrap)
# if(CorModel == "RationalQuad") CovMat <- CorModel.RationalQuad(dismat)
# if(CorModel == "CauchyGrav") CovMat <- CorModel.CauchyGrav(dismat)
# if(CorModel == "CauchyMag") CovMat <- CorModel.CauchyMag(dismat)
# if(CorModel == "Cauchy") CovMat <- CorModel.Cauchy(dismat, extrap)
# if(CorModel == "Circular") CovMat <- CorModel.Circular(dismat)
if(CorModel == "Spherical") CovMat <- corModelSpherical(dismat, 1)
CovMat <- parsil * CovMat + diag(nugget, nrow = n, ncol = n)
data.frame(loc.data, z = t(chol(CovMat)) %*% stats::rnorm(n))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.