slmobj <- slmfit(formula = counts ~ pred1 + pred2, data = exampledataset,
xcoordcol = 'xcoords', ycoordcol = 'ycoords',
areacol = 'areavar')
slmobj_noarea <- slmfit(formula = counts ~ pred1 + pred2,
data = exampledataset,
xcoordcol = 'xcoords', ycoordcol = 'ycoords')
predobj <- predict(slmobj)
test_that("Areas are incorporated into the estimator", {
predobj_noarea <- predict(slmobj_noarea)
expect_gte(predobj$FPBK_Prediction, predobj_noarea$FPBK_Prediction)
expect_gte(predobj$PredVar, predobj_noarea$PredVar)
})
test_that("The correct parameters are incorporated into prediction", {
expect_equal(slmobj$SpatialParmEsts, predobj$SpatialParms,
ignore_attr = TRUE)
})
predobj_wts <- predict(slmobj, wtscol = "dummyvar")
test_that("Predictions in example data set don't change", {
expect_equal(predobj$FPBK_Prediction, 813.1637, tolerance = .1,
ignore_attr = TRUE)
expect_equal(predobj$PredVar, 607.1478, tolerance = .1,
ignore_attr = TRUE)
expect_equal(predobj_wts$FPBK_Prediction, 351.2619, tolerance = .1,
ignore_attr = TRUE) ## for the weights
expect_equal(predobj_wts$PredVar, 26.29932, tolerance = .1,
ignore_attr = TRUE) ## for the weights
})
slmobj_ML <- slmfit(formula = counts ~ pred1 + pred2,
data = exampledataset,
xcoordcol = 'xcoords', ycoordcol = 'ycoords',
areacol = 'areavar',
estmethod = "ML")
predobj_ML <- predict(slmobj_ML)
test_that("Maximum Likelihood gives similar estimate to REML", {
expect_equal(predobj$FPBK_Prediction, predobj_ML$FPBK_Prediction,
tolerance = 5)
})
slmobj_sph <- slmfit(formula = counts ~ pred1 + pred2, data = exampledataset,
xcoordcol = 'xcoords', ycoordcol = 'ycoords',
areacol = 'areavar',
CorModel = "Spherical")
slmobj_gau <- slmfit(formula = counts ~ pred1 + pred2, data = exampledataset,
xcoordcol = 'xcoords', ycoordcol = 'ycoords',
areacol = 'areavar',
CorModel = "Gaussian")
slmobj_none <- slmfit(formula = counts ~ pred1 + pred2,
data = exampledataset,
xcoordcol = 'xcoords', ycoordcol = 'ycoords',
areacol = 'areavar',
CorModel = "Exponential",
covestimates = c(0.1, 150, 1), estmethod = "None")
test_that("The other (non-exponential) covariance functions work", {
predobj_sph <- predict(slmobj_sph)
predobj_gau <- predict(slmobj_gau)
predobj_none <- predict(slmobj_none)
expect_equal(predobj$FPBK_Prediction, predobj_sph$FPBK_Prediction,
tolerance = 20)
expect_equal(predobj$FPBK_Prediction, predobj_gau$FPBK_Prediction,
tolerance = 20)
expect_equal(predobj$FPBK_Prediction, predobj_none$FPBK_Prediction,
tolerance = 20)
})
test_that("predict.slmfit objects are printed", {
expect_error(print(predobj), NA)
})
test_that("deprecated predict function generates warning", {
expect_warning(get.predinfo(predobj), NULL)
})
exampledataset$counts_nomiss <- rpois(n = nrow(exampledataset), 5)
mod_nomiss <- slmfit(counts_nomiss ~ 1,
data = exampledataset, xcoordcol = "xcoords",
ycoordcol = "ycoords")
test_that("message is returned when none of the response values are missing", {
expect_error(predict(mod_nomiss), NULL)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.