Description Usage Arguments Value Author(s) References Examples
OMiSA is a non-parametric method which tests the association between a microbial group (e.g., community, taxon) composition and a survival (time-to-event) response on human health or disease with or without covariate adjustments (e.g., age, sex).
1 2 |
obstime |
A numeric vector for the observed times. |
delta |
A numeric vector for the event/censoring indicators (1: event, 0: censoring). |
X |
A matrix for the OTU table (1. Elements are counts. 2. Rows are samples and columns are OTUs. 3. Monotone/singletone OTUs must be removed.). |
total.reads |
A numeric vector for the total reads per sample in the entire community. If you survey the entire community, you do not need to specify this. If you test a microbial taxon, you need to specify this (see the examples below). Default is NULL for the entire community. |
tree |
A rooted phylogenetic tree. |
cov |
A data.frame (or vector) for covariate adjustment(s) (Rows are samples and columns are covariate variables). |
pow |
A set of the candidate gamma values. Default is c(1/4, 1/3, 1/2, 1). |
g.unif.alpha |
A set of the candidate alpha parameter value(s) for the generalized UniFrac distance (e.g., c(0.25, 0.5)). Default is c(0.5). |
n.perm |
The number of permutations. Default is 5000. |
pvs.misaln: The estimated p-values for individual MiSALN tests
pvs.mirkats: The estimated p-values for individual MiRKAT-S tests
p.omisaln: The estimated p-value for OMiSALN
p.omirkats: The estimated p-value for OMiRKAT-S
p.omisa: The estimated p-value for OMiSA
Hyunwook Koh
Koh H, Livanos AE, Blaser MJ, Li H. (2018) A highly adaptive microbiome-based association test for survival traits. BMC Genomics 19, 210
Plantinga A, Zhan X, Zhao N, Chen J, Jenq RR, Wu MC. (2017) MiRKAT-S: a community-level test of association between the microbiota and survival times. Microbiome 5, 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | library(dirmult)
library(phyloseq)
library(robustbase)
library(robCompositions)
library(BiasedUrn)
library(CompQuadForm)
library(GUniFrac)
library(ecodist)
library(survival)
library(OMiSA)
### An example simulated microbiome data with survival outcomes
data(MiSurv.Data)
otu.tab <- otu_table(MiSurv.Data)
tax.tab <- tax_table(MiSurv.Data)
tree <- phy_tree(MiSurv.Data)
obstime <- as.numeric(unlist(sample_data(MiSurv.Data)[,1]))
delta <- as.numeric(unlist(sample_data(MiSurv.Data)[,2]))
x1 <- as.numeric(unlist(sample_data(MiSurv.Data)[,3]))
x2 <- as.numeric(unlist(sample_data(MiSurv.Data)[,4]))
covs <- as.data.frame(cbind(x1, x2))
covs[,2] <- as.factor(covs[,2])
### Example 1. To test the entire community (e.g., kingdom)
set.seed(100)
OMiSA(obstime, delta, otu.tab, total.reads=NULL, tree, cov=covs)
### Example 2. To test the higher-level taxon, p__Firmicutes
# Important notice: Create n total reads counts "in the entire community" and
# specify it into the element, "total.reads", of the function, OMiSA, as below.
total.reads <- rowSums(otu.tab)
ind.Firmicutes <- which(tax.tab[,2] == "p__Firmicutes")
otu.tab.Firmicutes <- otu.tab[,ind.Firmicutes]
tree.Firmicutes <- prune_taxa(colnames(otu.tab.Firmicutes), tree)
set.seed(100)
OMiSA(obstime, delta, otu.tab.Firmicutes, total.reads=total.reads,
tree.Firmicutes, cov=covs)
### Example 3. To test the higher-level taxon, p__Bacteroidetes
# Important notice: Create n total reads counts "in the entire community" and
# specify it into the element, "total.reads", of the function, OMiSA, as below.
total.reads <- rowSums(otu.tab)
ind.Bacteroidetes <- which(tax.tab[,2] == "p__Bacteroidetes")
otu.tab.Bacteroidetes <- otu.tab[,ind.Bacteroidetes]
tree.Bacteroidetes <- prune_taxa(colnames(otu.tab.Bacteroidetes), tree)
set.seed(100)
OMiSA(obstime, delta, otu.tab.Bacteroidetes, total.reads=total.reads,
tree.Bacteroidetes, cov=covs)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.