direct_GCNB_ARMA_likelihood: direct_GCNB_ARMA_likelihood

Description Usage Arguments Details Value Note Author(s) References Examples

View source: R/direct_GCNB_ARMA_likelihood.R

Description

Direct Likelihood evaluation of GCNB model with ARMA(p,q) correlation matrix Requires: mnormt, mvtnorm

Usage

1
direct_GCNB_ARMA_likelihood(covariances, nb.p, nb.s, data, method="mnormt")

Arguments

covariances

Theoretical ARMA(p,q) covariances corresponding to the dependence structure

nb.p

X_t ~ NB (p, s)

nb.s

X_t ~ NB (p, s)

data

observed data

method

a string of value "mnormt" or "mvtnorm" only

Details

Evaluated likelihood function directly

Value

A numeric value of the evaluated likelihood function given the observed data and dependence parameters, and marginal parameters nb.p and nb.s.

Note

ARMA(p,q) dependence structure is used.

Cannot be optimised using optim(numeric(n), fn=direct_GCNB_ARMA_likelihood, nb.p=0.3, nb.s=3, data=data) which i think is due to the sadvm() function it calls from Fortan. direct_GCNB_AR1_likelihood can be optimised over one parameter but is SLOW for n > 8.

Author(s)

Hannah Lennon <drhannahlennon@gmail.com>

References

Shi and Valdez, (2012), Longitudinal Modelling of Insurance Claims using Jittering.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
library(mnormt)
library(mvtnorm)


n <- 4
set.seed(n)
simdata    <- arima.sim(n, model=list(ar=0.7))
data       <- qnbinom(pnorm(simdata), prob=0.3, size=3)
cov        <- ARMAacf(ar=0.7, lag.max=n-1, pacf=FALSE)

direct_GCNB_ARMA_likelihood(cov, 0.3, 3, data, method="mnormt")
direct_GCNB_AR1_likelihood(0.7,  0.3, 3, data, method="mnormt")

direct_GCNB_ARMA_likelihood(cov,  0.3, 3, data, method="mvtnorm")
direct_GCNB_AR1_likelihood(0.7,  0.3, 3, data, method="mvtnorm")

optimise(f=direct_GCNB_AR1_likelihood, interval=c(-0.9, 0.9), nb.p=0.3, nb.s=3, data=data, method="mnormt",  maximum=TRUE)

hlennon/copulaIVTS documentation built on Dec. 20, 2021, 4:45 p.m.