Description Usage Arguments Details Value Note Author(s) References Examples
View source: R/direct_GCNB_ARMA_likelihood.R
Direct Likelihood evaluation of GCNB model with ARMA(p,q) correlation matrix Requires: mnormt, mvtnorm
1 | direct_GCNB_ARMA_likelihood(covariances, nb.p, nb.s, data, method="mnormt")
|
covariances |
Theoretical ARMA(p,q) covariances corresponding to the dependence structure |
nb.p |
X_t ~ NB (p, s) |
nb.s |
X_t ~ NB (p, s) |
data |
observed data |
method |
a string of value "mnormt" or "mvtnorm" only |
Evaluated likelihood function directly
A numeric value of the evaluated likelihood function given the observed data and dependence parameters, and marginal parameters nb.p and nb.s.
ARMA(p,q) dependence structure is used.
Cannot be optimised using optim(numeric(n), fn=direct_GCNB_ARMA_likelihood, nb.p=0.3, nb.s=3, data=data) which i think is due to the sadvm() function it calls from Fortan. direct_GCNB_AR1_likelihood can be optimised over one parameter but is SLOW for n > 8.
Hannah Lennon <drhannahlennon@gmail.com>
Shi and Valdez, (2012), Longitudinal Modelling of Insurance Claims using Jittering.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | library(mnormt)
library(mvtnorm)
n <- 4
set.seed(n)
simdata <- arima.sim(n, model=list(ar=0.7))
data <- qnbinom(pnorm(simdata), prob=0.3, size=3)
cov <- ARMAacf(ar=0.7, lag.max=n-1, pacf=FALSE)
direct_GCNB_ARMA_likelihood(cov, 0.3, 3, data, method="mnormt")
direct_GCNB_AR1_likelihood(0.7, 0.3, 3, data, method="mnormt")
direct_GCNB_ARMA_likelihood(cov, 0.3, 3, data, method="mvtnorm")
direct_GCNB_AR1_likelihood(0.7, 0.3, 3, data, method="mvtnorm")
optimise(f=direct_GCNB_AR1_likelihood, interval=c(-0.9, 0.9), nb.p=0.3, nb.s=3, data=data, method="mnormt", maximum=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.