ExtArch2FParam-class | R Documentation |
CalibrationParam-class with two parameters for the extendible Archimedean-(survival-)copula model with Exponential margins for the (average) default counting process.
## S4 method for signature 'ExtArch2FParam' initialize( .Object, dim, lambda, nu, rho, tau, survival, family = c("Clayton", "Frank", "Gumbel", "Joe") ) ## S4 method for signature 'ExtArch2FParam' simulate_dt(object, ..., n_sim = 10000L) ## S4 method for signature 'ExtArch2FParam' expected_pcds_equation( object, times, discount_factors, recovery_rate, coupon, upfront, ..., method = c("default", "prob", "mc") ) ## S4 method for signature 'ExtArch2FParam' show(object) ## S4 method for signature 'ClaytonExtArch2FParam' initialize(.Object, ..., survival = FALSE) ## S4 method for signature 'FrankExtArch2FParam' initialize(.Object, ..., survival = TRUE) ## S4 method for signature 'GumbelExtArch2FParam' initialize(.Object, ..., survival = TRUE) ## S4 method for signature 'JoeExtArch2FParam' initialize(.Object, ..., survival = TRUE)
.Object |
An object: see the “Initialize Methods” section. |
dim |
Dimension. |
lambda |
Marginal intensity. |
nu |
(Internal) dependence parameter (see copula::archmCopula). |
rho |
Bivariate Spearman's Rho. |
tau |
Bivariate Kendall's Tau. |
survival |
Flag if survival copula is specified (default, except for Clayton). |
family |
Name of the Archimedean copula family (see copula::archmCopula). |
object |
A CalibrationParam-object. |
... |
Pass-through parameters. |
n_sim |
Number of samples. |
times |
A non-negative numeric vector of timepoints. |
discount_factors |
Non-negative numeric vector for the discount factors for the timepoints. |
recovery_rate |
Non-negative number between zero and one for the recovery rate.. |
coupon |
Numeric number for the running coupon. |
upfront |
Numeric number for the upfront payment. |
method |
Calculation method (either |
The model is defined by the assumption that the multivariate default times
τ = (τ_1, …, τ_d) are from an extendible
Archimedean-(survival-)copula with Exponential margins.
The (internal) dependency parameter ν (model specific) has a
one-to-one relationship and can be replaced by Spearman's Rho rho
(except
for the family based on Joe's copula) or Kendall's Tau tau
. The possible
range for rho
and tau
is from zero to one (boundaries might not be
included).
initialize(ExtArch2FParam)
: Constructor
simulate_dt(ExtArch2FParam)
: simulates the vector of default times and returns a matrix x
with
dim(x) == c(n_sim, getDimension(object))
.
expected_pcds_equation(ExtArch2FParam)
: calculates the payoff equation for a portfolio CDS (vectorized w.r.t.
the argumentes recovery_rate
, coupon
, and upfront
).
show(ExtArch2FParam)
: Display the object.
initialize(ClaytonExtArch2FParam)
: Constructor
initialize(FrankExtArch2FParam)
: Constructor
initialize(GumbelExtArch2FParam)
: Constructor
initialize(JoeExtArch2FParam)
: Constructor
lambda
A non-negative number for the marginal rate.
nu
A numeric number for the model specific dependence parameter.
The default times are sampled in a two-stage procedure: First a sample is
drawn from the Archimedean copula, see copula::archmCopula and
copula::rCopula()
; then the results are transformed using stats::qexp()
.
The expected portfolio CDS loss for recovery rate R is calculated using that
\mathbb{E}[g(L_t)] = (1 - R) \cdot F(t)
with g(x) = (1 - R) \cdot x and F being the Exponential distribution function for rate λ.
ExtArch2FParam(dim = 5L, lambda = 8e-2, rho = 4e-1, family = "Clayton", survival = TRUE) ExtArch2FParam(dim = 5L, lambda = 8e-2, rho = 4e-1, family = "Gumbel", survival = FALSE) ExtArch2FParam(dim = 5L, lambda = 8e-2, tau = 4e-1, family = "Frank", survival = FALSE) ExtArch2FParam(dim = 5L, lambda = 8e-2, tau = 4e-1, family = "Joe", survival = FALSE) parm <- FrankExtArch2FParam(dim = 5L, lambda = 8e-2, rho = 4e-1) simulate_dt(parm, n_sim = 5L) parm <- FrankExtArch2FParam(75L, 8e-2, rho = 4e-1) expected_pcds_equation( parm, times = seq(25e-2, 5, by = 25e-2), discount_factors = rep(1, 20L), recovery_rate = 0.4, coupon = 1e-1, upfront = 0) expected_pcds_equation( parm, times = seq(25e-2, 5, by = 25e-2), discount_factors = rep(1, 20L), recovery_rate = 0.4, coupon = 1e-1, upfront = 0, method = "mc", n_sim = 1e1) ClaytonExtArch2FParam() ClaytonExtArch2FParam(5L, 8e-2, rho = 4e-1) ClaytonExtArch2FParam(5L, 8e-2, tau = 4e-1) FrankExtArch2FParam() FrankExtArch2FParam(5L, 8e-2, rho = 4e-1) FrankExtArch2FParam(5L, 8e-2, tau = 4e-1) GumbelExtArch2FParam() GumbelExtArch2FParam(5L, 8e-2, rho = 4e-1) GumbelExtArch2FParam(5L, 8e-2, tau = 4e-1) JoeExtArch2FParam() JoeExtArch2FParam(5L, 8e-2, tau = 4e-1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.