ExtMO2FParam-class | R Documentation |
CalibrationParam-class with two parameters for the extendible Marshall-Olkin model for the (average) default counting process. Extends ExtMOParam.
## S4 method for signature 'ExtMO2FParam' initialize(.Object, dim, lambda, nu, rho, tau, alpha) ## S4 method for signature 'ExtMO2FParam' expected_pcds_equation( object, times, discount_factors, recovery_rate, coupon, upfront, ..., method = c("default", "prob", "mc") ) ## S4 method for signature 'ExtMO2FParam' show(object) ## S4 method for signature 'ArmageddonExtMO2FParam' simulate_dt(object, ..., n_sim = 10000L) ## S4 method for signature 'ArmageddonExtMO2FParam' simulate_adcp(object, times, ..., n_sim = 10000L)
.Object |
An object: see the “Initialize Methods” section. |
dim |
Dimension. |
lambda |
Marginal intensity. |
nu |
(Internal) bivariate dependence parameter. |
rho |
Bivariate Spearman's Rho. |
tau |
Bivariate Kendall's Tau. |
alpha |
Bivariate lower tail-dependence coefficient. |
object |
A CalibrationParam-object. |
times |
A non-negative numeric vector of timepoints. |
discount_factors |
Non-negative numeric vector for the discount factors for the timepoints. |
recovery_rate |
Non-negative number between zero and one for the recovery rate.. |
coupon |
Numeric number for the running coupon. |
upfront |
Numeric number for the upfront payment. |
... |
arguments to specify properties of the new object, to
be passed to |
method |
Calculation method (either |
n_sim |
Number of samples. |
The model is defined by the assumption that the multivariate default times
τ = (τ_1, …, τ_d) are extendible Marshall-Olkin, see
ExtMOParam for the details. This class provides an interface for
easy-to-use, 2-factor families for this model.
For all implemented families, the marginal rate can be specified by lambda
and the dependence can be specified by the internal parameter nu
.
For all implemented families, the (internal) dependence parameter nu
has a
one-to-one relationship, and can be replaced by, Spearman's Rho rho
,
Kendall' Tau tau
or the (lower) tail dependence coefficient alpha
.
The possible range for rho
, tau
, and alpha
is from zero to one
(boundaries might not be included).
The link between lower tail-dependence coefficient α and
Spearman's Rho and Kendall's Tau is
α = 4 ρ / (3 + ρ) and ρ = 3 α / (4 - α)
α = 2 τ / (1 + τ) and τ = α / (2 - α)
initialize(ExtMO2FParam)
: Constructor
expected_pcds_equation(ExtMO2FParam)
: calculates the payoff equation for a portfolio CDS (vectorized w.r.t.
the argumentes recovery_rate
, coupon
, and upfront
).
show(ExtMO2FParam)
: Display the object.
simulate_dt(ArmageddonExtMO2FParam)
: simulates the vector of default times and returns a matrix x
with
dim(x) == c(n_sim, getDimension(object))
.
simulate_adcp(ArmageddonExtMO2FParam)
: simulates the average default counting process and returns a
matrix x
with dim(x) == c(n_sim, length(times))
.
lambda
A non-negative number for the marginal rate.
nu
A numeric number for the model specific dependence parameter (range
depends on specific model, use rho
, tau
, or alpha
to set dependence
parameter).
The expected portfolio CDS loss for recovery rate R is calculated using that
\mathbb{E}[g(L_t)] = (1 - R) \cdot F(t)
with g(x) = (1 - R) \cdot x and F being the Exponential distribution function for rate λ.
Corresponds to a Lévy subordinator which is a convex combination of a pure-killing subordinator and a pure-drift subordinator.
ψ(x) = ν + (1 - ν) x
α = ν
The default times are sampled using algorithms from rmo::rmo-package.
The default times are sampled using rmo::rexmo()
.
Corresponds to an α-stable subordinator.
ψ(x) = x^ν
ν = \log_2(2 - α) and α = 2 - 2^ν
Corresponds to a Lévy subrodinator which is a convex combination of a
Poisson subordinator with jump size nu
and a pure-drift subordinator.
ψ(x) = \operatorname{e}^{-ν}x + (1 - \operatorname{e}^{-x ν})
ν = -log(1 - sqrt(α)) and α = (1 - \operatorname{e}^{-ν})^2
Corresponds to a Lévy subordinator which is a convex combination of an
Exponential-jump compound Poisson process with rate nu
and unit-intensity
and a pure-drift subordinator.
ψ(x) = (1 - 1 / (1 + ν))x + x / (x + ν)
ν = 0.5 \cdot (-3 + √{1 + 8 / α}) and α = 2 / (1 + ν) - 2 / (2 + ν)
ArmageddonExtMO2FParam() ArmageddonExtMO2FParam(dim = 5L, lambda = 8e-2, rho = 4e-1) AlphaStableExtMO2FParam() AlphaStableExtMO2FParam(dim = 5L, lambda = 8e-2, rho = 4e-1) PoissonExtMO2FParam() PoissonExtMO2FParam(dim = 5L, lambda = 8e-2, tau = 4e-1) ExponentialExtMO2FParam() ExponentialExtMO2FParam(dim = 5L, lambda = 8e-2, alpha = 4e-1) parm <- ArmageddonExtMO2FParam(dim = 75L, lambda = 0.05, rho = 0.4) expected_pcds_equation( parm, times = seq(25e-2, 5, by = 25e-2), discount_factors = rep(1, 20L), recovery_rate = 0.4, coupon = 1e-1, upfront = 0) expected_pcds_equation( parm, times = seq(25e-2, 5, by = 25e-2), discount_factors = rep(1, 20L), recovery_rate = 0.4, coupon = 1e-1, upfront = 0, method = "mc", n_sim = 1e1) parm <- ArmageddonExtMO2FParam(dim = 5L, lambda = 8e-2, rho = 4e-1) simulate_dt(parm, n_sim = 5L) parm <- ArmageddonExtMO2FParam(dim = 5L, lambda = 8e-2, rho = 4e-1) simulate_adcp(parm, times = seq(25e-2, 5, by = 25e-2), n_sim = 5L)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.