H2ExMarkovParam-class | R Documentation |
CalibrationParam for the H2-exchangeable Markovian (average) default counting process model. Extends H2ExCalibrationParam and related to ExMarkovParam.
## S4 method for signature 'H2ExMarkovParam' initialize(.Object, fraction, models) ## S4 method for signature 'H2ExMarkovParam' simulate_dt(object, ..., n_sim = 10000L) ## S4 method for signature 'H2ExMarkovParam' probability_distribution(object, times, ...) ## S4 method for signature 'H2ExMarkovParam' show(object)
.Object |
An object: see the “Initialize Methods” section. |
fraction |
The proportion associated with the global model, see details. |
models |
A list with the global and component models (of the type
|
object |
A CalibrationParam-object. |
... |
Pass-through parameters. |
n_sim |
Number of samples. |
times |
A non-negative numeric vector of timepoints. |
The model is defined by the assumption that the vector of default times is defined as the component-wise minimum of two vectors of the same length. The first vector is simulated from a (scaled) global ExMarkovParam model and the second vector is the (scaled) conjunction of independent ExMarkovParam models. The inverse scaling factors are a convex combination.
initialize(H2ExMarkovParam)
: Constructor
simulate_dt(H2ExMarkovParam)
: simulates the vector of default times and returns a matrix x
with
dim(x) == c(n_sim, getDimension(object))
.
probability_distribution(H2ExMarkovParam)
: calculates the probability vector for the average default count process
and returns a matrix x
with dim(x) == c(getDimension(object)+1L, length(times))
.
show(H2ExMarkovParam)
: Display the object.
models
A list with the global and component models (of the type
ExMarkovParam-class
).
fraction
The proportion associated with the global model, see details.
The default times are sampled using the stochastic representation described in details.
The probability of j > i portfolio items being defaulted at time t > s conditioned on i portfolio items being defaulted at time s is
\mathbb{P}(Z_t = j \mid Z_s = i) = ∑_{i + i_0 + i_1 + \cdots + i_J = j} δ_{i}^\top \operatorname{e}^{(t-s) Q^{(1)}} δ_{i_1} \cdot δ_{i_1}^\top \operatorname{e}^{(t-s) Q^{(2)}} δ_{i_2} \cdot \cdots \cdot δ_{i_{J-1}}^\top \operatorname{e}^{(t-s) Q^{(J)}} δ_{i_J} \cdot δ_{i_J}^\top \operatorname{e}^{(t-s) Q^{(0)}} δ_{i_0} ,
where Q^{(i)}, …, Q^{(J)} are the Markovian generator matrices of the partition models and Q^{(0)} is the Markovian generator matrix of the global model.
H2ExMarkovParam() composition <- c(2L, 4L, 2L) d <- sum(composition) model_global <- ExMarkovParam(rmo::exQMatrix(rmo::AlphaStableBernsteinFunction(0.4), d)) model_partition <- purrr::map(composition, ~{ ExMarkovParam(rmo::exQMatrix(rmo::AlphaStableBernsteinFunction(0.5), .x)) }) models <- c(list(model_global), model_partition) H2ExMarkovParam(fraction = 0.4, models = models) composition <- c(2L, 4L, 2L) d <- sum(composition) model_global <- ExMarkovParam(rmo::exQMatrix(rmo::AlphaStableBernsteinFunction(0.4), d)) model_partition <- purrr::map(composition, ~{ ExMarkovParam(rmo::exQMatrix(rmo::AlphaStableBernsteinFunction(0.5), .x)) }) models <- c(list(model_global), model_partition) parm <- H2ExMarkovParam(fraction = 0.4, models = models) simulate_dt(parm, n_sim = 5e1) probability_distribution(ArmageddonH2ExtMO3FParam( composition = c(2L, 4L, 2L), lambda = 0.05, rho = c(3e-1, 6e-1)), 0.3) probability_distribution(AlphaStableH2ExtMO3FParam( composition = c(2L, 4L, 2L), lambda = 0.05, rho = c(3e-1, 6e-1)), 0.3) probability_distribution(PoissonH2ExtMO3FParam( composition = c(2L, 4L, 2L), lambda = 0.05, rho = c(3e-1, 6e-1)), 0.3) probability_distribution(ExponentialH2ExtMO3FParam( composition = c(2L, 4L, 2L), lambda = 0.05, rho = c(3e-1, 6e-1)), 0.3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.