ExtMOParam-class | R Documentation |
CalibrationParam-class for the extendible Marshall-Olkin model for the average default counting process. Extends ExtMOParam.
## S4 method for signature 'ExtMOParam' initialize(.Object, dim, bf) ## S4 method for signature 'ExtMOParam' show(object)
.Object |
An object: see the “Initialize Methods” section. |
dim |
Dimension. |
bf |
Bernstein function. |
object |
Any R object |
The model is defined by the assumption that the multivariate default times τ = (τ_1, …, τ_d) are extendible Marshall-Olkin. The joint survival function of all portfolio items is
P(τ > t) = \exp{(- a_0 t_{[1]} - \cdots - a_{d-1} t_{[d]})} ,
for t_{[1]} ≥q \cdots ≥q t_{[d]} begin the descending version of t and
a_{i} = ∑_{l=0}^{d-i-1} \binom{d-i-1}{l} λ_{l+1} .
The parameter are implicitly defined by a +Bernstein function* ψ (which is provided to the constructor):
a_{i} = ψ{(i+1)} - ψ{(i)} .
initialize(ExtMOParam)
: Constructor
show(ExtMOParam)
: Display the object.
bf
The Bernstein function of the extendible Marshall-Olkin distribution (see rmo::BernsteinFunction).
ExtMOParam() ExtMOParam( dim = 2, bf = rmo::ScaledBernsteinFunction( scale = 0.05, original = rmo::SumOfBernsteinFunctions( first = rmo::ConstantBernsteinFunction(constant = 0.4), second = rmo::LinearBernsteinFunction(scale = 1 - 0.4)) ))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.