#' Plot Hyfe trajectory
#'
#' In this plot, all users are plotted with the start of their monitoring period beginning at the plot's origin.
#' This type of plot could be useful if you want to examine patterns across users, such as retention in using the app
#' or the evoution of cough during a COVID-19 diagnosis.
#'
#' @param ho A `hyfe` object, which is generated by `process_hyfe_data()`.
#' This function only accepts `hyfe` objects that have been processed with ` by_user = TRUE`.
#' See full details and examples in the [package vignette](https://hyfe-ai.github.io/hyfer/#hyfe_object).
#' @param type The variable to plot.
#' @param time_unit The time unit by which to plot it.
#' @param pool_users If `TRUE`, all user data will be pooled together into a single cumulative line.
#' @param day_max Option to control the extent of the X axis. In a trajectory plot, the minimum of the X axis will always be zero.
#' @param print_plot If `TRUE` (the default), the plot will be printed for you.
#' @param return_plot If `TRUE` (*not* the default), the `ggplot` plot object will be returned.
#' This can be useful if you want to modify/add to the plot (e.g., change axis titles, add a plot title, etc.).
#' @param return_data If `TRUE` (*not* the default), a simple dataframe will be returned
#' that provides you with the exact values used to produce the plot.
#' @param verbose Print status updates?
#'
#' @return
#' @export
#'
plot_trajectory <- function(ho,
type = c('coughs','sounds','sessions', 'rate'),
unit = c('days','hours','weeks'),
pool_users = FALSE,
day_max = NULL,
print_plot = TRUE,
return_plot = FALSE,
return_data = FALSE,
verbose=TRUE){
if(FALSE){
# debugging only - not run
data(hyfe_data)
ho <- process_hyfe_data(hyfe_data, by_user = TRUE)
type <- 'rate'
unit <- 'days'
day_max = NULL
pool_users = FALSE
# Try it
plot_trajectory(ho)
plot_trajectory(ho, type='sessions', unit = 'hours')
plot_trajectory(ho, type='sessions', unit = 'days')
plot_trajectory(ho, type='sessions', unit = 'days', pool_users = TRUE)
plot_trajectory(ho, type='sessions', unit = 'weeks')
plot_trajectory(ho, type='sounds', unit = 'hours')
plot_trajectory(ho, type='sounds', unit = 'days')
plot_trajectory(ho, type='sounds', unit = 'days', pool_users = TRUE)
plot_trajectory(ho, type='sounds', unit = 'weeks')
plot_trajectory(ho, type='coughs', unit = 'hours')
plot_trajectory(ho, type='coughs', unit = 'days')
plot_trajectory(ho, type='coughs', unit = 'days', pool_users = TRUE)
plot_trajectory(ho, type='coughs', unit = 'weeks')
plot_trajectory(ho, type='rate', unit = 'hours')
plot_trajectory(ho, type='rate', unit = 'days')
plot_trajectory(ho, type='rate', unit = 'days', pool_users = TRUE)
plot_trajectory(ho, type='rate', unit = 'weeks')
}
# Stage safe copies of datasets
hoi <- ho
plot_type <- type[1]
time_unit <- unit[1]
#i=1
#for(i in 1:length(hoi$user_summaries)){
# useri <- hoi$user_summaries[[i]]
# names(useri)
# hoursi <- useri$hours
#}
hoi <- pool_user_data(hoi,
group_users = FALSE,
verbose=verbose)
names(hoi)
hoi$hours %>% names
# Source dataset from correct time unit and variable type ====================
if(time_unit == 'hours'){
df <- hoi$hours
df$x <- df$study_hour
xlabel <- 'Hours since enrollment'
if(plot_type == 'sessions'){
df$y <- df$session_hours
ylabel <- 'Monitoring (person-hours)'
}
}
if(time_unit == 'days'){
df <- hoi$days
df$x <- df$study_day
xlabel <- 'Days since enrollment'
if(plot_type == 'sessions'){
df$y <- df$session_days
ylabel <- 'Monitoring (person-days)'
}
}
if(time_unit == 'weeks'){
df <- hoi$weeks
df$x <- df$study_week
xlabel <- 'Weeks since enrollment'
if(plot_type == 'sessions'){
df$y <- df$session_days/7
ylabel <- 'Monitoring (person-weeks)'
}
}
if(plot_type == 'sounds'){
df$y <- df$peaks
ylabel <- 'Explosive sounds (n)'
}
if(plot_type == 'coughs'){
df$y <- df$coughs
ylabel <- 'Cough detections (n)'
}
if(plot_type == 'rate'){
df$y <- df$cough_rate
ylabel <- 'Coughs per person-hour (n)'
}
# Simplify
df <- df %>% dplyr::select(x,y,session_hours,uid)
# Handle trajectory component
head(df)
new_df <- data.frame()
uids <- unique(df$uid)
i=1
for(i in 1:length(uids)){
uidi <- uids[i] ; uidi
dfi <- df[df$uid == uidi,]
dfi
t0 <- which(dfi$session_hours > 0.1)[1]
t0
dfi$x <- dfi$x - t0
dfi <- dfi[dfi$x >= 0,]
range(dfi$x)
new_df <- rbind(new_df, dfi)
}
df <- new_df
# Handle date filters
if(is.null(day_max)){day_max <- max(df$x)}
# Pool user data if specified
if(pool_users){
df <- df %>% dplyr::group_by(x) %>% dplyr::summarize(y=sum(y))
}
# Build plot =================================================================
if(pool_users){
p <-ggplot2::ggplot(df, ggplot2::aes(x=x, y=y)) +
ggplot2::theme(legend.text = ggplot2::element_text(size=4)) +
ggplot2::geom_area(alpha=.3,col='seagreen4',fill='seagreen4') +
ggplot2::geom_line(alpha=.5,lwd=.5,col='seagreen4')
}else{
p <-ggplot2::ggplot(df, ggplot2::aes(x=x, y=y, color=uid)) +
ggplot2::geom_line(alpha=.5)
}
# add labels & xlim
p <- p +
ggplot2::xlim(0,day_max) +
ggplot2::xlab(xlabel) +
ggplot2::ylab(ylabel)
# Return
return_list <- list()
if(return_plot){return_list$plot <- p}
if(return_data){return_list$data <- df}
if(print_plot){print(p)}
if(length(return_list)>0){return(return_list)}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.