#' \code{get_distance_score} calculated tree based distance score for a single tree to a random forest built with \code{ranger}.
#'
#'
#' @param rf Object of class \code{ranger} used with \code{write.forest = TRUE}.
#' @param dist_val_rf Distance values for the random forest created with get_distance_values()
#' @param dist_val_tree Distance values for the tree created with get_distance_values()
#' @param metric Specification of distance (dissimilarity) metric. Available are "splitting variables",
#' "weighted splitting variables", and "prediction".
#' @param test_data Additional data set comparable to the data set \code{rf} was build on. Only needed for metric "prediction".
#'
#' @author Lea Louisa Kronziel, M.sc.
#' @return mean distance of tree to random forest
#' @import ranger
#' @import dplyr
#' @import checkmate
get_distance_score <- function(rf, dist_val_rf, dist_val_tree, metric, test_data = NULL){
# Check inputs ----
if (!checkmate::testClass(rf, "ranger")){
stop("rf must be of class ranger")
}
if (!checkmate::testList(rf$forest)){
stop("rf must be trained using write.forest = TRUE.")
}
if (!checkmate::testChoice(metric,
choices = c("splitting variables", "weighted splitting variables", "prediction", "terminal nodes"))){
stop(paste("metric has to be from c('splitting variables', 'weighted splitting variables', 'prediction', 'terminal nodes')."))
}
if (metric %in% c("prediction")){
if (checkmate::testNull(test_data)){
stop("You have to provide a test data set for distance measure by prediction.")
}
if ("try-error" %in% class(try(predict(rf, data = test_data)))){
stop("The provided test data set does not fit to the provided ranger object")
}
if (nrow(test_data) < 2){
stop("You have to provide at least two samples as a test data set")
}
} else {
if (!checkmate::testNull(test_data)){
message("You provided a test data set for a distance measure by splitting variables. This is not necessary and will be ignored.")
}
}
#-----
distance_values <- cbind(dist_val_tree,dist_val_rf)
if (metric == "splitting variables"){
# Extract number of features
num_features <- rf$num.independent.variables
# Calculate standardized pair-wise distances
distances <- as.matrix(dist(t(distance_values), method = "euclidian"))^2 / num_features
return(mean(distances[,1]))
}
if (metric == "weighted splitting variables"){
# Extract number of features
num_features <- rf$num.independent.variables
# Calculate standardized pair-wise distances
distances <- as.matrix(dist(t(distance_values), method = "euclidian"))^2
return(mean(distances[,1]))
}
if (metric == "prediction"){
# Controll if outcome is factor
if (is.factor(rf$predictions)){
# Calculate standardized pair-wise distances
distances <- as.matrix(dist(t(distance_values), method = "manhattan")) / nrow(test_data)
} else {
# Calculate standardized pair-wise distances: quadratic euclidian distance
distances <- as.matrix(dist(t(distance_values), method = "euclidian"))^2 / nrow(test_data)
}
return(mean(distances[,1]))
}
if(metric == "terminal nodes"){
# terminal nodes of rf in dist_val_rf, those of tree in dist_val_tree
terminal_nodes <- cbind(dist_val_tree, dist_val_rf)
# measure_distances
# Function to calculate list of matrices if two observations end in same leaf for every tree
calculate_same_leaf <- function(tree_nodes){as.matrix(dist(tree_nodes)) == 0}
# Calculate if two observations end in same leaf of the trees
same_leaf_list = apply(terminal_nodes, 2, calculate_same_leaf, simplify = F)
# Function to calculate the frequency of how often pairwise observations in two trees behave differently
# (same leaf in one tree vs. different leaves in the other tree)
calculate_dist_terminal_leafs <- function(same_nodes_a,same_nodes_b){
return(sum(xor(same_nodes_a,same_nodes_b))/(nrow(same_nodes_a)^2-(nrow(same_nodes_a))))
}
# calculate distance
distances <- outer(same_leaf_list,same_leaf_list,Vectorize(calculate_dist_terminal_leafs))
return(mean(distances[,1]))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.