#' check table `Plotdetails` from `Fieldmap` database for inconsistencies
#'
#' This function retrieves the important fields of table `Plotdetails`
#' (of all periods) from the given database and
#' checks for missing data or wrong input.
#'
#' @inheritParams check_data_trees
#'
#' @return Dataframe with inconsistent data with ID's and additional columns
#' `aberrant_field` (which column is wrong) and `anomaly` (what is wrong with
#' the input)
#'
#' @examples
#' library(forrescalc)
#' # (add path to your own fieldmap database here)
#' path_to_fieldmapdb <-
#' system.file("example/database/mdb_bosres.sqlite", package = "forrescalc")
#' check_data_plotdetails(path_to_fieldmapdb)
#' check_data_plotdetails(path_to_fieldmapdb, forest_reserve = "Everzwijnbad")
#'
#' @export
#'
#' @importFrom DBI dbDisconnect dbGetQuery
#' @importFrom rlang .data
#' @importFrom dplyr %>% across bind_rows filter group_by ungroup mutate select
#' @importFrom lubridate year
#' @importFrom tidyr pivot_longer
#' @importFrom tidyselect ends_with starts_with
#'
check_data_plotdetails <- function(database, forest_reserve = "all") {
selection <-
ifelse(
forest_reserve == "all", "",
paste0("WHERE pd.ForestReserve = '", forest_reserve, "'")
)
query_plotdetails <-
"SELECT pd.IDPlots As plot_id,
qPlotType.Value3 AS plottype,
pd.ForestReserve AS forest_reserve,
pd.Date_Dendro_%1$deSet AS date_dendro,
pd.FieldTeam_Dendro_%1$deSet AS fieldteam,
pd.rA1 AS ra1,
pd.rA2 AS ra2,
pd.rA3 AS ra3,
pd.rA4 AS ra4,
pd.LengthCoreArea_m AS length_core_area_m,
pd.WidthCoreArea_m AS width_core_area_m,
pd.Area_ha AS area_ha
FROM (Plots
INNER JOIN Plotdetails_%1$deSet pd ON Plots.ID = pd.IDPlots)
INNER JOIN qPlotType ON Plots.Plottype = qPlotType.ID
%3$s;"
query_plotdetails_1986 <- sprintf(
"SELECT pd.IDPlots As plot_id,
qPlotType.Value3 AS plottype,
pd.ForestReserve AS forest_reserve,
pd.Date_Dendro_1986 AS date_dendro,
pd.FieldTeam_Dendro_1eSet AS fieldteam,
pd.rA1 AS ra1,
pd.rA2 AS ra2,
pd.rA3 AS ra3,
pd.rA4 AS ra4,
pd.LengthCoreArea_m AS length_core_area_m,
pd.WidthCoreArea_m AS width_core_area_m,
pd.Area_ha AS area_ha
FROM (Plots
INNER JOIN Plotdetails_1986 pd ON Plots.ID = pd.IDPlots)
INNER JOIN qPlotType ON Plots.Plottype = qPlotType.ID
%1$s;",
selection
)
data_plotdetails <-
query_database(database, query_plotdetails, selection = selection)
con <- connect_to_database(database)
data_plotdetails_1986 <- dbGetQuery(con, query_plotdetails_1986) %>%
mutate(period = 0)
if (nrow(data_plotdetails_1986) > 0) {
if (inherits(con, "SQLiteConnection")) {
data_plotdetails_1986 <- data_plotdetails_1986 %>%
mutate(
date_dendro = as.POSIXct(.data$date_dendro, origin = "1970-01-01")
)
}
data_plotdetails <- data_plotdetails %>%
bind_rows(
data_plotdetails_1986
)
}
dbDisconnect(con)
incorrect_plotdetails <- data_plotdetails %>%
group_by(.data$forest_reserve, .data$period, .data$plottype) %>%
mutate(
forest_reserve_date = median(.data$date_dendro)
) %>%
ungroup() %>%
mutate(
field_forest_reserve =
ifelse(is.na(.data$forest_reserve), "missing", NA),
field_date_dendro =
ifelse(is.na(.data$date_dendro), "missing", NA),
field_date_dendro =
ifelse(
is.na(.data$field_date_dendro) &
year(.data$date_dendro) != year(.data$forest_reserve_date),
"deviating",
.data$field_date_dendro
),
field_fieldteam = ifelse(is.na(.data$fieldteam), "missing", NA),
field_ra1 =
ifelse(is.na(.data$ra1) & .data$plottype == "CP", "missing", NA),
field_ra2 =
ifelse(is.na(.data$ra2) & .data$plottype == "CP", "missing", NA),
field_ra3 =
ifelse(is.na(.data$ra3) & .data$plottype == "CP", "missing", NA),
field_ra4 =
ifelse(is.na(.data$ra4) & .data$plottype == "CP", "missing", NA),
field_length_core_area_m =
ifelse(
is.na(.data$length_core_area_m) & .data$plottype == "CA", "missing",
NA
),
field_width_core_area_m =
ifelse(
is.na(.data$width_core_area_m) & .data$plottype == "CA", "missing",
NA
),
field_area_ha =
ifelse(is.na(.data$area_ha) & .data$plottype == "CA", "missing", NA)
) %>%
pivot_longer(
cols = c(starts_with("field_")),
names_to = "aberrant_field",
values_to = "anomaly",
values_drop_na = TRUE
) %>%
mutate(
aberrant_field = gsub("^field_", "", .data$aberrant_field),
plottype = NULL,
forest_reserve = NA_character_,
date_dendro = as.character(.data$date_dendro),
fieldteam = as.character(.data$fieldteam),
forest_reserve_date = NULL,
across(starts_with("ra"), as.character),
across(ends_with("_core_area_m"), as.character),
area_ha = as.character(.data$area_ha)
) %>%
pivot_longer(
cols = !c("plot_id", "period", "aberrant_field", "anomaly"),
names_to = "varname",
values_to = "aberrant_value"
) %>%
filter(.data$aberrant_field == .data$varname) %>%
select(-"varname")
return(incorrect_plotdetails)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.