context("cleanup_multivariate_ts_object")
test_that("check cleanup_multivariate_ts_object with multiseasonal, multivariate ts object", {
ts_object <- tstools::initialize_ts_forecast_data(
data = dummy_gasprice,
date_col = "year_month",
col_of_interest = "gasprice",
group_cols = c("state", "oil_company"),
xreg_cols = c("spotprice", "gemprice")
) %>%
dplyr::filter(grouping == "state = New York & oil_company = CompanyA") %>%
dplyr::mutate(original_col_of_interest = col_of_interest) %>%
tstools::transform_data_to_ts_object(seasonal_periods = c(12,3))
function_output <- cleanup_multivariate_ts_object(ts_object = ts_object)
expect_equal(class(function_output), c("msts", "ts"))
expect_equal(nrow(function_output), 191)
expect_equal(ncol(function_output), 3)
expect_equal(colnames(function_output), c("col_of_interest", "spotprice", "gemprice"))
expect_equal(attr(function_output, "seasonality"), c(12,3))
expect_equal(attr(function_output, "grouping"), "state = New York & oil_company = CompanyA")
expect_equal(attr(function_output, "xreg_cols"), c("spotprice", "gemprice"))
})
test_that("check cleanup_multivariate_ts_object with uniseasonal, multivariate ts object", {
ts_object <- tstools::initialize_ts_forecast_data(
data = dummy_gasprice,
date_col = "year_month",
col_of_interest = "gasprice",
group_cols = c("state", "oil_company"),
xreg_cols = "gemprice"
) %>%
dplyr::filter(grouping == "state = New York & oil_company = CompanyA") %>%
dplyr::mutate(original_col_of_interest = col_of_interest) %>%
tstools::transform_data_to_ts_object(seasonal_periods = 3)
function_output <- cleanup_multivariate_ts_object(ts_object = ts_object)
expect_true(is.ts(function_output))
expect_equal(nrow(function_output), 191)
expect_equal(ncol(function_output), 2)
expect_equal(colnames(function_output), c("col_of_interest", "gemprice"))
expect_equal(attr(function_output, "seasonality"), 3)
expect_equal(attr(function_output, "grouping"), "state = New York & oil_company = CompanyA")
expect_equal(attr(function_output, "xreg_cols"), "gemprice")
})
test_that("check cleanup_multivariate_ts_object with uniseasonal, univariate ts object", {
ts_object <- tstools::initialize_ts_forecast_data(
data = dummy_gasprice,
date_col = "year_month",
col_of_interest = "gasprice",
group_cols = c("state", "oil_company")
) %>%
dplyr::filter(grouping == "state = New York & oil_company = CompanyA") %>%
dplyr::mutate(original_col_of_interest = col_of_interest) %>%
tstools::transform_data_to_ts_object(seasonal_periods = 12)
function_output <- cleanup_multivariate_ts_object(ts_object = ts_object)
expect_true(is.ts(function_output))
expect_equal(nrow(function_output), 191)
expect_equal(ncol(function_output), 1)
expect_equal(colnames(function_output), "col_of_interest")
expect_equal(attr(function_output, "seasonality"), 12)
expect_equal(attr(function_output, "grouping"), "state = New York & oil_company = CompanyA")
expect_equal(attr(function_output, "xreg_cols"), character())
})
test_that("check cleanup_multivariate_ts_object with multiseasonal, univariate ts object", {
ts_object <- tstools::initialize_ts_forecast_data(
data = dummy_gasprice,
date_col = "year_month",
col_of_interest = "gasprice",
group_cols = c("state", "oil_company")
) %>%
dplyr::filter(grouping == "state = New York & oil_company = CompanyA") %>%
tstools::transform_data_to_ts_object(seasonal_periods = c(12,3))
function_output <- cleanup_multivariate_ts_object(ts_object = ts_object)
expect_equal(ts_object, function_output)
expect_equal(class(function_output), c("msts", "ts"))
expect_equal(nrow(function_output), 191)
expect_equal(ncol(function_output), 1)
expect_equal(colnames(function_output), "col_of_interest")
expect_equal(attr(function_output, "seasonality"), c(12,3))
expect_equal(attr(function_output, "grouping"), "state = New York & oil_company = CompanyA")
expect_equal(attr(function_output, "xreg_cols"), character())
})
test_that("check cleanup_multivariate_ts_object with non-ts objects", {
expect_error(
cleanup_multivariate_ts_object(ts_object = dummy_gasprice)
)
non_ts_object <- tstools::initialize_ts_forecast_data(
data = dummy_gasprice,
date_col = "year_month",
col_of_interest = "gasprice",
group_cols = c("state", "oil_company"),
xreg_cols = c("spotprice", "gemprice")
) %>%
dplyr::filter(grouping == "state = New York & oil_company = CompanyA")
expect_error(
cleanup_multivariate_ts_object(ts_object = non_ts_object)
)
non_ts_object <- tstools::initialize_ts_forecast_data(
data = dummy_gasprice,
date_col = "year_month",
col_of_interest = "gasprice",
group_cols = c("state", "oil_company"),
xreg_cols = c("spotprice", "gemprice")
) %>%
dplyr::filter(grouping == "state = New York & oil_company = CompanyA") %>%
tstools::transform_data_to_ts_object(seasonal_periods = c(12,3)) %>%
as.vector()
expect_error(
cleanup_multivariate_ts_object(ts_object = non_ts_object)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.