Description Usage Arguments Details Value
The objective function using L2-loss with three penalty functions. An extension of the elastic net regression.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
x |
the data matrix X_{n\times p}, where n is the number of observations, p is the number of features. |
y |
the response vector Y_{n\times 1} with length n |
tau_S1 |
τ_1, the controlling parameter corresponding to p_1(\cdot), which determines when the small values of |β_j| will be penalized. |
tau_S2 |
τ_2, the controlling parameter corresponding to p_2(\cdot), which determines when the small difference values of |β_j - β_{j'}| will be penalized. |
lambda1 |
λ_1, the tuning parameter corresponding to p_1(\cdot) |
lambda2 |
λ_2, the tuning parameter corresponding to p_2(\cdot) |
lambda3 |
λ_3, the tuning parameter corresponding to p_3(\cdot) |
beta |
β, the estimation of β |
Bjj |
a matrix of p\times p with element β_{jj'} = β_{j}-β_{j'} . |
SF |
the \mathcal{F} set, p-length vector of indicator 0-1. Its value is 1 if |β_j| ≤q τ_1 . Otherwise 0. |
SFc |
the \mathcal{F}^{c} set, p-length vector of indicator 0-1. Its value is 1 if |β_j| > τ_1 . Otherwise 0. |
SE |
the \mathcal{E} set, a matrix of p\times p with indicator 0-1.
Its value is 1 if |β_{j}-β_{j'}| ≤q τ_2. Otherwise 0.
Note if τ_2=0, j=j', then 0<=0 is true, the diagonal of \mathcal{E} is 1.
We should set |
SEc |
the \mathcal{E}^{c} set, a matrix of p\times p with indicator 0-1. |
SN |
the \mathcal{N} set, p-length vector of indicator 0-1. Its value is 1 when β_j < 0, corresponding to \min(β_j, 0). |
The objective function using L2 loss is defined as follows,
\frac{1}{2n} \|Y- Xβ\|^2 + λ_{1}p_1(β) + λ_{2}p_2(β) + λ_{3}p_3(β) .
The three penalties are as follows,
p_1(β) = ∑_{j=1}^p \min\{\frac{|β_j|}{τ_1}, 1\} ,
p_2(β) = ∑_{j < j', (j, j') \in E} \min\{\frac{|β_j - β_{j'}|}{τ_2}, 1\},
p_3(β) = ∑_{j=1}^p (\min\{β_j, 0\})^2 .
the value of the objective function
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.